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Kuidas kirjeldada mingit looduslikku kooslust, protsessi või nähtust, mismoodi saada teada, mida arvavad inimesed loodusest, keskkonnast? Võime kirjutada kokkuvõtva essee või jutustuse sellest, mida me näeme, mida vastati jne. Paraku on aga nii, et juttu kirjutades satume olukorda, kus tahaksime mingit üldistavat väidet esitada. Selleks on vaja osata koguda andmeid ja nende abil matemaatilisi analüüse teha.
Alati pole nii, et mida rohkem vaatlusi, küsitlusi jne me teeme, seda kindlamalt saame üldistusi teha. Samas, ainult andmete rohkus ei ole oluline, vaid ka see, et andmeid kogutakse teadlikult, erinevates kohtades, eri aegadel, erinevatel ilmastiku ja keskkonna tingimustel, küsitledes erinevaid inimeste gruppe jne. jne. Kindel on see, et kunagi ei suuda me mõõta ära absoluutselt kõike, mida me looduses näha ja mõõta võiks või mida kõik inimesed ühest või teisest asjast arvata võiks. Tuleb välja töötada võimalikult ratsionaalne plaan või eesmärk, kuidas objekti või nähtust sellist piiratud informatsiooni hulka kasutades võimalikult hästi (adekvaatselt) kirjeldada. Selles aitavad meid andmeanalüüsi meetodid, mis põhinevad peamiselt matemaatilise statistika ja tõenäosusteooria algtõdedel.
Andmeanalüüsi peamine ülesanne on teha üldistavaid või kokkuvõtvaid järeldusi mõõtmiste, katsete, vaatluste ja muude sarnaste andmete põhjal. Ülesanne lahendatakse hüpoteesi püstitamise kaudu.
Mõned konkreetsed ülesannete tüübid:
1. hüpoteeside kontrollimine, üldistuste tegemine kogutud andmete põhjal;
2. prognoosi ülesannete lahendamine mudeli koostamise ja kasutamise abil. Mudelid koostatakse kogutud andmete põhjal, mudeli abil saadus tulemused üldistatakse;
3. kirjeldav ülesanne. Põhineb keskmiste, mediaani, hajuvusenäitajate jne arvutamisel ja esitamisel.
Vahendid ülesannete lahendamiseks:
statistika tarkvara paketid, mõned neist on tasulised ( STATA, SAS, STATISTICA, S-PLUS, Exceli lisapakett), mõned internetist tasuta allalaaditavad (R (seda kasutame), STATCRUNCH, SISA…).
[bookmark: _heading=h.tyjcwt]Statistiline andmestik. Mõisted
Üldkogum (populatsioon) - teatav nähtus või protsess looduses või ühiskonnas, mille kohta soovitakse teha teaduslikult põhjendatud järeldusi kasutades statistilise andmeanalüüsi meetodeid. Laialt võttes koosneb üldkogum lõpmatust hulgast objektidest, mida iseloomustab lõpmatu hulk tunnuseid. Praktiliselt aga peab uurija objektid, faktorid ja tunnused mingis mõttes piiritlema juba üldkogumit määratledes ja  hüpoteesi püstitades.
Valim on üldkogumi kohta kättesaadavat informatsioon, s.o. mingit lõplik arv tunnuseid, mida mõõdetakse lõplikul arvul üldkogumi objektidel. See on andmetabeli sisu.
Statistika ülesanne on teha arvutused ning järeldused valimi põhjal, üldistades tulemused üldkogumile. Teisiti öeldes, hüpotees on üldkogumi kohta, järeldused tehakse valimi põhjal üldkogumile.
[bookmark: _heading=h.3dy6vkm]Valimi koostamine on siinkohal äärmiselt oluline ja vastutusrikas ülesanne.
Valim peab olema üldkogumit esindav. Selle tagavad järgmised nõuded:
a. valim peab olema piisavalt arvukas, suurema valimi kasutamise eeliseks on võimalus sooritada üksikasjalikumat analüüsi ja teha korrektsemaid järeldusi;
b. valimi moodustamisel peab üldkogumi objektidel olema võrdne tõenäosus valimisse sattumiseks.
Objekt - kokkuleppeline liigendusühik. Andmetabelis tavaliselt rida, millesse pannakse kirja vaadeldud isendi või olukorra mõõdetud näitajad, laboris analüüsitud veeproovi tulemused, ankeedi vastused jne. Üldiselt võib sisestada andmestikku mitut moodi, kuid analüüsimiseks tuleb arvestada konkreetse analüüsi meetodi ja tarkvaraga.
Funktsioontunnused (nimetatakse ka „uuritav tunnus“, „sõltuv tunnus“ või edaspidi siin aines lihtsalt „tunnus“) - objekti mõõtmisel või inimeste küsitlemisel saadud vastused, mille kohta me tahame järeldusi teha, mis mille muutumine pakub huvi . 
Argumenttunnused (antud aine materjalides „faktorid“) iseloomustavad konkreetse objekti mõõtmisel kaasnevaid tingimusi või tausta (näiteks sugu, rahvus,liik, ilmastikutingimused), need lisatakse samuti objekti juurde veergudena.
Olulisim erinevus faktori ja tunnuse vahel on see, et tavaliselt tuntakse huvi ja uuritakse tunnuste muutumist faktori mõjul, faktori väärtused lihtsalt on olemas nagu nad on. Statistilise analüüsi tegemisel on faktori ja tunnuste tüübi kindlaksmääramine olulise tähtsusega! 

Kõikne uuring - valim ja üldkogum kattuvad ehk statistilise andmebaasi moodustavad kõik üldkogumi objektid. Bioloogias, üldiselt looduses, on kõikse uuringu läbiviimine peaaegu, et võimatu. Kõikse uuringu kohta kõige parem näide on rahvaloenduse tulemused, kus eeldatakse, et kõik inimesed saavadki üle loetud ja intervjueeritud.
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[bookmark: _heading=h.do7sq06otihg]… vastavalt nende võimalikele väärtustele:

Pidevad arvulised tunnused sisaldavad idee poolest väga palju erinevaid väärtusi, kusjuures neist iga konkreetse väärtuse esinemise tõenäosus on 0. Näiteks inimese kaal kilogrammides või grammides, kasv sentimeetrites või millimeetrites, üldfosfori kontsentratsioon veeproovis milligrammides või mikrogrammides liitri kohta jne.
Diskreetsed arvulised tunnused sisaldavad piiratud arvu erinevaid väärtusi. Tunnus on diskreetne, kui sellel on lõplik või loenduv naturaalarvuline number võimalikke väärtusi.
Eraldi tunnuste ja faktorite tüübi moodustavad ainult kahte väärtust omavad binaarsed ehk dihhotoomsed tunnused. Näiteks järgmised väärtustepaarid „on haige - ei ole haige“, „esineb - ei esine“ jms võivad olla nii tunnused, mida hinnatakse (tavaliselt esinemise tõenäosusena) kui ka faktorid, mis võivad oluliselt mistahes teise tunnuse väärtusi mõjutada.
Nominaalsed tunnused näitavad objekti kuulumist mingisse kindlasse kategooriasse (rahvus, ilmakaar, järvetüüp, sugu), kuid ei võimalda midagi öelda nende kategooriate omavaheliste kvantitatiivsete suhete kohta (eestlane ei ole vähem ega rohkem kui venelane, põhi ei ole suurem kui lõuna jne.) Nominaalsetel tunnustel pole sisulist järjestust ja nendega ei saa tehteid teha.
[bookmark: _heading=h.17dp8vu]… vastavalt funktsionaalsele otstarbele andmeanalüüsi protsessis:
Funktsioontunnus (sõltuv tunnus, Dependent variable) on see näitaja, mille muutumist või käitumist tahetakse uurida, tähistatakse matemaatiliselt vektorina Yi..
Argumenttunnus (sõltumatu tunnus, Independent variable, Predictor, siin aines faktor) tähistatakse matemaatiliselt tunnusvektori Xi  abil. Olenevalt kontekstist nimetame edaspidi argumenttunnuseid faktoriteks. Iga kord pole sellisel vahettegemisel tähtsust, küll aga just analüüsi meetodi seisukohast lähtudes.
Argumenttunnuseid ehk faktoreid mõõdetakse ja kasutatakse tausta või mõju kirjeldamiseks, funktsioontunnuste muutumist uuritakse andmeanalüüsi käigus.
Statistilise analüüsi seisukohalt võib faktorid jagada kaheks, fikseeritud (fixed) ja juhuslikud (random). 
Fikseeritud-faktoril on tavaliselt: 
a) vähe nivoosid 
b) iga nivoo pakub iseseisvat huvi,
c) andmetes on kõik nivood esindatud,
d) analüüsiga tahetakse saada iga nivoo mõju kohta eraldi infot, nt iga nivood iseloomustatakse eraldi arvulise efektiga, mida ta põhjustab sellel nivool olevatele objektidele (näiteks tunnuse väärtuste keskmised erinevad).
Juhusliku faktori korral 
a) on potentsiaalselt väga palju nivoosid, 
b) on andmetes (valimis) nendest vaid juhuslik valik, 
c) huvi pakub kõigi (ka andmetes esindamata) nivoode keskmine mõju tunnustele.
d) analüüsil saame teada faktori muutumise mõju tunnuse hajuvusele üldiselt.
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Tunnustel ja faktoritel on iga objekti jaoks oma kindel väärtus (value), kas arv või mingi tekst. Väärtused võivad olla mitme objekti korral samad, aga võivad ka iga objekti korral erineda.
Tunnused on reeglina juhuslikud, see tähendab, et mõõtmise või katse kordamisel võib saada iga kord erineva tulemuse ehk väärtuse. Tunnuse väärtust, mis saadakse mõõtmise või vaatluse teel, käsitleb matemaatiline statistika kui juhusliku suuruse mõõtmise tulemust ehk realisatsiooni. Juhusliku suuruse mõõtmine on konkreetse väärtuse saamine suurest hulgast võimalikest. Tõenäosusteooria ettekujutuse kohaselt on tunnuse mõõtmine katse, mis seisneb
1. objekti valimises üldkogumist (see on juhuslik);
2. tunnuse mõõtmisel valitud objektil (ka see on juhuslik).
Tõenäosusjaotus ehk lihtsalt jaotus on tunnuse väärtuste protsentuaalne jaotumine üldkogumis (populatsioonis). See on tihti statistika pakettides väljendatud suhtarvuna nii, et tervik on 1 (või protsendina 100). Tunnuse iga väärtuse osakaal üldkogumis on selle just väärtuse esinemise tõenäosus. Näiteks, kui tunnuse mingi väärtus (näiteks hinne 4) esineb tõenäosusega 0.5, siis on see väärtus 50% objektidel. 
Diskreetsete tunnuste jaotust saab väljendada jaotus- või sagedustabelina, graafiliselt histogrammina või tulpdiagrammina. Jaotustabelis on kirjas iga väärtuse esinemise tõenäosus, sagedustabelis iga väärtuse esinemiste arv. Histogrammil või tulpdiagammil on sagedus- või jaotustabeli väärtused (tõenäosused) näidatud arvude asemel vastava pikkusega (kui mitu korda üks või teine väärtus esines) tulpadena. Sektordiagrammil on sagedustabeli väärtuste osakaalud esitatud ringi kui terviku sektoritena. 
Diskreetse arvtunnuse ja nominaaltunnuse puhul vaadatakse kõigepealt 
· missuguseid väärtusi see tunnus üldse omandab 
· kui sageli iga väärtus esineb. 
Oletame, et meil on olemas valim. Selles esineva diskreetse tunnuse jaotuse iseloomustamiseks loetakse kokku mitu korda iga (erinev) väärtus andmestikus esineb. 
Kui diskreetse tunnuse väärtuste hulk on piisavalt suur (üle 20), siis saab rakendada tunnusele pideva tunnuse jaoks mõeldud analüüsimeetodeid. 
Pidevate tunnuste korral ei ole sagedustabelil ehk konkreetse väärtuse loendamisel mingit mõtet, seetõttu statistikas võetakse aluseks et pideva tunnuse iga üksiku väärtuse esinemise tõenäosus on 0. Selge see, et valimis on reaalsed väärtused, aga neid on lihtsalt nii palju erinevaid, et hinnata saab neist igaühe kuulumist mingisse vahemikku. Kõige parem näide pideva tunnuse kohta on näiteks pikkus. Täiskasvanud inimeste pikkuse vahemik on jämedalt võttes 150-200. Juhusliku valimi korral näeb sagedustabel reeglina välja selline, et igat pikkust esineb maksimaalselt (kui on suur valim) ehk 10 korda (võttes 1 cm kaupa), tavaliselt on iga pikkus esindatud vaid 1-2 korda. Samal ajal sobib pidevat tunnust väga hästi iseloomustamaks statistikas väga olulist näitajat (parameetrit), need on keskväärtus ja standardhälve. Graafiliselt sobib pidevat tunnust samuti iseloomustama histogramm (klassifitseerib väärtused automaatselt), millelt saab välja lugeda informatsiooni nii tunnuse paiknemise kui ka hajuvuse kohta. Praktikumis vaatame histogramme lähemalt.Üheks sobivaks jaotuseks, mis looduses palju esineb ja millel on ka palju häid matemaatilisi omadusi, on normaaljaotus, mille tekkimise kohta ütleb piirteoreem järgmist kui tunnuse väärtust kujundavad väga paljud sõltumatud või nõrgalt sõltuvad faktorid, millest ükski ei domineeri ning iga neist suurendab või vähendab tunnuse väärtust suhteliselt vähe, siis on tunnusel matemaatilise paratamatusena normaaljaotus.
 Normaaljaotuse ja usalduspiiride teooria kohta saab lühiülevaate lisamaterjalidest.
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Asendiparameetrid iseloomustavad juhusliku suuruse (tunnuse) väärtuste paiknemist: 
1) keskväärtus – see on nn. juhusliku suuruse matemaatiline ooteväärtus (kõige tõenäolisem, tavalisem vmt väärtus). Tähistatakse teoorias kreeka μ - müü.
Keskväärtuse arvutamiseks sobivad:
Aritmeetiline keskmine arvutatakse valimi korral järgmiselt - liidetakse üksikväärtused (neid on n tükki) ja saadud summa jagatakse liidetavate arvuga.
Valem: =(x1+x2+…xn)/n
Kõikse uuringu korral nimetatakse saadud arvu keskväärtuseks, kuid valikuuringu korral valimkeskmiseks või üldkogumi keskväärtuse hinnanguks.
2) mediaan – juhusliku suuruse selline väärtus, mille korral on võrdtõenäoline, et juhusliku suuruse väärtus on sellest suurem või väiksem. Lõpliku kogumi (valimi) korral leitakse tunnuse variatsioonirea (tunnuse väärtused järjestatud) keskmise elemendina; see on arv, millest nii väiksemaid kui suuremaid väärtusi on samapalju. 
Valimi mediaan on üldkogumi mediaani hinnang.
Tihti on mõttekas uurida mediaani ja keskmise väärtuse erinevust.
Kui tegemist on tunnusega, mis on ebasümmeetriline, siis erinevad keskmine ja mediaan palju, aritmeetilist keskmist mõjutab tugevasti näiteks see, kui valimis (kogumis) on vähe ebaloomulikult suuri või väikseid väärtusi (neid nimetatakse “erindid” või “jämedad vead”).
3) mood – tunnuse väärtus, mis esineb kõige sagedamini ja mille esinemise tõenäosus on kõige suurem. Kui valimil on mitu moodi, nimetatakse tunnust multimodaalseks. 
[bookmark: _heading=h.c4430ejbzm6y]Hajuvuse ehk kuju parameetrid.
Tunnuse hajuvus üldiselt näitab, kui erinevad võivad olla tunnuse üksikud väärtused üldkogumis. Juhuslike tunnuste väärtused xi kõiguvad (muutuvad) alati suuremal või vähemal määral keskväärtuse ümber. Pideva jaotuse korral kasutatakse hajuvuse iseloomustamiseks sõnu dispersioon, varieeruvus (Variance, Dispersion) , mis on konkreetselt arvutatavad. Üksikväärtuse erinevusi tunnuse keskmisest väärtusest nimetatakse tihti ka hälveteks ja neid erinevusi kasutataksegi jaotuse hajuvuse näitaja ehk parameetri arvutamiseks - on keskväärtuse tähistus ja xi on konkreetse objekti väärtus.
Kõige tähtsam hajuvuse näitaja on dispersioon: , valimite korral kasutatakse valimi dispersiooni arvutamise valemit , mida nimetatakse üldkogumi dispersiooni hinnanguks. Arvutuse eeskirjadest on näha, et suurte valimite korral (üle 1000) pole suurt erinevust valimi dispersiooni ja üldkogumi dispersiooni vahel. Hajuvuse tähis on kreeka täht σ – sigma.
Dispersiooni omadused: 
1. mida rohkem on tunnusel keskväärtusest erinevaid väärtusi, seda suurem on dispersioon;
2. mida suuremad on hälbed keskväärtusest, seda suurem on dispersioon
3. konstantse tunnuse dispersioon on 0
4. dispersioon on alati positiivne
5. juhuslikule suurusele arvu juurde liites dispersioon ei muutu
6. juhusliku suuruse korrutamisel arvuga b suureneb dispersioon b2 korda
Kuna dispersioon on väljendatud nn. ruutühikus, siis praktilistes arutlustes kasutatakse tema asemel hajuvuse kirjeldamiseks hoopis standardhälvet, mis on ruutjuur dispersioonist, vastavad valemid on: 
üldkogumi jaoks 
valimi jaoks   -hinnang üldkogumi standardhälbele.
Kui meil on tegemist normaaljaotusele lähedaste tunnusega, esindusliku valimiga ning tunnuse keskväärtus ja standardhälve on teada, siis kehtivad järgmised võrdused (loeme nii: tõenäosus, et väärtus on vahemikus keskväärtus pluss-miinus standardhälve on…)



St, et normaaljaotusega tunnusel on  99,7% väärtustest (so enamus) nn „3-sigma piirkonnas“. 
Kui kasutada üldkogumi keskväärtuse hindamiseks mitmeid valimeid ja nende põhjal arvutada mitmeid valimkeskmisi, siis nende keskmiste hajuvuse iseloomustamiseks kasutatakse nn. standardviga, mis  ( n- valimi maht, s- valimi standardhälve)
Tunnuse hajuvuse iseloomustamiseks kasutatakse variatsioonirea põhjal leitavaid  kvartiile - need on sellised variatsioonirea punktid, mis jagavad koos mediaaniga arvude variatsioonirea neljaks võrdsete elementide arvuga osaks. Alumise (vasakul paiknev) ja ülemise (paremal paiknev) kvartiili vahe on kvartiilvahemik, mis iseloomustab hajuvust sarnaselt standardhälbega. Erinevus tuleb ilmsiks jälle siis, kui tegu ei ole normaaljaotusega. Kui tunnuse jaotus ei sarnane normaaljaotusele, siis on hajuvuse iseloomustamiseks parem kasutada kvartiile. Variatsioonikordaja on standardhälbe ja keskväärtuse suhe. Variatsioonikordaja esitatakse tavaliselt protsentides, mida väiksem on variatsioonikordaja, seda ühtlasem on kogum. Variatsioonikordajat kasutatakse tavaliselt siis, kui on vaja kahe üldkogumi hajuvust võrrelda ja teised hajuvusmõõdud võrdlemiseks ei sobi (näiteks andmed on võrreldamatud oma dimensiooni või mõõtühikute poolest). Lihtkeeles võiks öelda, et variatsioonikordaja näitab, kui suur on kõikumine keskmise ümber.
Variatsioonikordaja valem .
[bookmark: _heading=h.1y810tw]Üldkogumi parameetrite hindamine 
[bookmark: _heading=h.4i7ojhp]Punkthinnang
Kuna valim on tavaliselt ainult mingi osa uurijat huvitavast üldkogumist (tähistame ÜK), siis on selge, et erinevate valimite korral saame ka erisugused keskväärtused ja dispersioonid. Selliste parameetrite nagu keskväärtus, mediaan, dispersioon, standardhälve jms. hinnangud on punkthinnangud (see tähendab, me kasutame üht konkreetset arvu). Valimi aritmeetiline keskmine näiteks sobib ÜK keskväärtuse hinnanguks, valimi variatsioonirea keskmine väärtus sobib ÜK mediaani hinnanguks, valimi standardhälve ÜK standardhälbe hinnanguks.
Statistilises kirjanduses pannakse hinnangule peale kas väike katuseke või laineke. ÜK keskväärtus tähistatakse näiteks , dispersioon . Valimi keskmine tähistatakse ja dispersioon s2. Statistikud on tõestanud, et juhusliku valimi korral on normaaljaotusega suuruse jaoks nii valimi aritmeetiline keskmine kui ka dispersioon kõige efektiivsemad nihketa hinnangud ÜK jaoks (vaata näiteks Parring, A jt. Statistilise andmetöötluse algõpetus,1997). Nihketa hinnang tähendab seda, et kui me leiame samast ÜK erinevate valimite jaoks aritmeetilise keskmise, siis võib tema tegelikust keskväärtusest olla suurem või väiksem sama tõenäosusega. Efektiivseim hinnang on aga võimalikest kõige täpsem, kõige väiksema hajuvusega. Kuna valimi põhjal arvutatud parameetrid (keskväärtus, dispersioon) on aga hinnangud, mis on juhuslikud (sest nad sõltuvad valimist) ja tavaliselt normaaljaotusega, siis on võimalus välja arvutada nende hinnangute usaldusväärsus ehk leida hinnangute usalduspiirid ÜK jaoks.
[bookmark: _heading=h.2xcytpi]Vahemikhinnangud
Vahemikhinnangu leidmine tähendab valimi abil teatava piirkonna määramist ÜK parameetri punkthinnangu (valimi keskmine, mediaan vms.) ümber nii, et ÜK tegelik parameeter (tegelik keskväärtus, mediaan jne, mida me ei saa kunagi arvutada) kuuluks piirkonda mingi kindla tõenäosusega. 
Kasutatakse mõisteid keskväärtuse alumine ja ülemine usalduspiir [lower / upper confidence limit]. 
[bookmark: _heading=h.1ci93xb]Näide. Olgu meil m õige, ent mitteteadaolev ÜK parameetri väärtus (keskväärtus);
Olgu meil ma alumine ja my ülemine usalduspiir keskväärtusele, siis otsitakse selliseid piire, et    P(ma<m<my) =1−α. P tähistab tõenäosust. Seletame lahti: tõenäosus, et üldkogumi keskväärtus asub usalduspiiride vahel on 0.95 ehk 95%.
Siin 1-α on usaldusnivoo (ühe lähedane, ent alati ühest väiksem) ja α on olulisuse nivoo, võimalikult väike positiivne arv, mis tähistab tõenäosust, kui palju me piiride määramisega eksida lubame (tavaliselt 0,01 , 0,05 või 0,1. Näiteks kui α = 0,05, siis on tegu 95%-liste usalduspiiridega.
[bookmark: _heading=h.3whwml4]Prognoosi- ehk tolerantsipiirid normaaljaotuse eeldusel
Keskväärtuse ja standardhälbe hinnangute põhjal on võimalik leida usaldusvahemik selle jaoks, kuhu mistahes juhuslik vaatluse tulemus satub. Valime jälle usaldustõenäosuse 95% ( kõige tihedamini kasutatav). Sel juhul, kui vaadeldav tunnus on normaaljaotusega ja meil on piisavalt suur valim, saame tolerantsi vahemikuks  μ ± 1.96* σ ( umbes kahekordne standardhälve). Jäta meelde, et tolerantsi intervallide leidmiseks peaks teadma üldkogumi tegelikku keskväärtust ja standardhälvet või dispersiooni (hajuvust). Seega peaks 95% eelmise lõigu näites vaadeldud järve läbipaistvuse mõõtmistest olema vahemikus 2±0,784 meetrit, eeldades, et valimi põhjal saadud standardhälbe hinnang sobib järve läbipaistvuse tegeliku standardhälbega.

[bookmark: _heading=h.op81mzn3nkfp]1.praktikum. Tunnuse jaotus
Kui andmetabel on moodustatud: objektid, tunnused ja faktorid kirjas, siis tavaliselt on esimene samm sisestusvigade ( vale mõõtühik, vale formaat, kirjaviga jms) avastamine. Selleks on kõige parem arvtunnuse korral miinimum-maksimum välja otsida, nominaalse tunnuse korral kõik erinevad tunnuse väärtused üle kontrollida - kõige mugavam on lasta seda teha arvutil.

ISESEISEV TÖÖ. Installeeri R oma arvutisse
https://cran.r-project.org/

Vali oma arvuti operatsioonisüsteemile vastav Download->base (esimest korda)
Windows vmt
Salvesta pakutud R exe-fail arvutisse ning käivita see.
Edasi vali vaikimisi pakutud variandid. Parem oleks, kui R ikoon salvestub arvuti töölauale (desktop).
R–ga töötamine. 
Klõpsa R ikoonile. Nähtavale ilmub Console aken. Vali File ->New script

Vaata videoklippi.  R tutvustus

Loeme andmed R- sisse
andmed=read.csv("http://haldna.ee/r/Statistika/EMU_2023.csv",header=TRUE,
sep=",", dec=".")
attach(andmed)
Küsimus: missugused käsud annavad kõige parema esmase ülevaate andmetest (kas on puuduvaid väärtusi, kui suur on andmestik, missugused on minimaalsed-maksimaalsed väärtused iga tunnuse korral, mis tüüpi nad on?Vastus: summary(andmed) väljundist näeme tavaliselt, mis tüüpi tunnusega on tegu, mis vahemikus tunnus varieerub. 
Leia väljatrükist tunnuse „pikkus“
Kvartiilid -
Mediaan -
Aritmeetiline keskmine -
Järgmised käsud töötavad ainult siis, kui sulgudesse lisada konkreetne tunnuse või faktori nimetus andmestikust.
Karp-vurrud diagram näitab tunnuse jaotust (mediaan ja kvartiilid, miinimum, maksimum, erindid. Vuntside ulatus on 1,5 kordne kvartiili pikkus.
Teeme näite tudengite pikkusega.
Kuidas muuta graafiku akent nii, et saame jooniseid järele vaadata?  Selleks teeme graafiku akna aktiivseks, valime History-> Recording
boxplot(pikkus,ylab="Pikkus, cm",main="Kõik tudengid")
Vaata summary(pikkus). Kas arvud langevad kokku?
Leia andmestikust veel üks pidev arvtunnus ja arvuta selle asendi ja hajuvuse parameetrid (valimi omad).
Pidevatele arvtunnustele kirjeldavaks asendiparameetriteks mediaan ja keskväärtus (näiteks valimi aritmeetiline keskmine). Lisaks summary käsule on R-s ka eraldi käsud NB! Sulgudesse kirjuta tunnuse nimi.
mean(); median()
Hajuvuse ehk varieeruvuse iseloomustamiseks on pideva tunnuse jaoks lisaks kvartiilidele võimalik leida standardhälve ja dispersioon. R-s käsud var() (dispersioon) ja sd() (standardhälve). Sulgudesse tunnuse nimi!
Võrdle mediaani ja keskväärtust. Kas nende väärtused erinevad? Kui jah, siis millest see tuleneb? Vaata kvartiile,kas need on võrdsel kaugusel mediaanist? Mida see ütleb jaotuse sümmeetrilisuse kohta? 
Kontrolli, kas ruutjuur dispersioonist annab standardhälbe. R-s on ruutjuure leidmiseks käsk sqrt(X); ruutu tõstmiseks kasutatakse konstruktsioone X**2 või   X^2. X asemel kasuta konkreetset arvu või tunnuse nime.
Pideva tunnuse jaotuse graafiliseks esitlemiseks sobib veel hist(tunnus). Vaata  pikkuse histogrammi! Kas oskad hinnata keskväärtust ja hajuvust selle põhjal? 
Nõuanne: histogrammilt vaata, kus on kõrgeim post, kas kas jaotus on sümmeetriline (viitab normaaljaotuse omadusele).
Teeme ise teoreetilise pikkuse, sünteesides andmed keskväärtuse ja standardhälbe järgi. R käsk: Pikkus=rnorm(n=200,mean=172,sd=9)
Vaatame kõrvuti kaht histogrammi (jrgm lk).Parempoolne on sümmeetrilisem, muidu suurt vahet ei ole.
par(mfrow=c(1,2)) # kaks graafikut kõrvuti
hist(pikkus, main="Empiirilised ",ylab="tudengite arv")
hist(Pikkus, main="Teoreetilised",ylab="")
Variatsioonikordaja arvutamine (valem ja mõiste loengust) 
sd()/mean()*100  # pane ise tunnuse nimed sulgudesse.


[image: ]
Nominaalse ja diskreetse väheste väärtustega tunnuse jaotust kirjeldab kõige paremini sagedustabel ja selle põhjal tehtud diagrammid.
table(); barplot(table()); pie(table())
Vaatame matemaatikahinde jaotust. Kuna seal on ainult 3 erinevat võimalust (3,4,5), siis on see väheste väärtustega diskreetne arvtunnus.
table(mathinne)
prop.table(table(mathinne)) # suhtelised sagedused
prop.table(table(mathinne))*100 # suhtelised sagedused protsentides
round(prop.table(table(mathinne))*100,1)
Anname enne tabelile lühema nime, siis muutuvad käsud lühemaks. Soovitan edaspidi alati niimoodi teha.
T1=table(mathinne)
prop.table(T1)*100
round(prop.table(?)*100,1)
barplot(T1)
pie(T1)  # võimalikud graafikud
[image: ]

Iseseisev ülesanne: otsi andmestikust üks pidev arvtunnus ja üks nominaalne tunnus ja tee nende kohta sagedustabelid koos joonisega.

[bookmark: _heading=h.5a358wb0qch4]Statistilised hüpoteesid ja nende testimine
Üks olulisemaid ülesandeid nii bioloogia teadustes, kui ka matemaatilises statistikas on mitmesuguste hüpoteeside (teaduslik oletus mingi nähtuse kohta) püstitamine ja kontrollimine.
Kõige üldisemalt küsitakse tavaliselt:
· kas on olnud muutusi; 
· kas erinevus on oluline;
· kas tunnuste vahel on mingeid olulisi seoseid jne.
Sellistele küsimustele saab vastata, kui “tõlkida” need enne “statistilisse keelde”. Juhul, kui tegu oleks kõikse uuringuga, saaksime vastuse kohe kätte. Sel juhul kahe populatsiooni keskmiste vahe ongi lõplik arv, mida ei pea enam testima. 
Bioloogias aga, nagu me teame, on peaaegu alati tegemist andmete valimiga, mis on saadud kogutuna üldkogumist. Kuna valim on alati juhuslik, tuleb enne otsuse tegemist lahendada järgmine probleem:
kas meie poolt tehtud järeldused valimi kohta kehtivad ka üldkogumis, ning kas me saame kinnitada, et tegu on üldise seaduspärasusega? 
Enne matemaatilise statistika aparatuuri kasutuselevõtmist :
· tuleb püstitada sisuline hüpotees ( võimalikut konkreetne);
· sõnastada vastav statistiline hüpotees ja selle vastandhüpotees sellisel moel, et hüpoteesid välistaksid teineteist täielikult;
· uurida, missugune statistiline meetod võiks sobida ja kontrollida eeldusi;
[bookmark: _heading=h.147n2zr]Hüpoteesipaar
Nullhüpotees ( H0 või H0 ) – konservatiivne väide, mis eeldab tavaliselt, et muutusi ei ole, erinevus puudub jms. Nullhüpoteesi ümberlükkamisega võtab uurija endale küllaltki suure vastutuse.
Alternatiivne hüpotees ( H1, H1 ) – kutsutakse ka sisukas hüpoteesiks : uudne lähenemine, mingi varasema tõe ümberlükkamine jne. Tavaliselt ongi see väide, mida uurija tõestama hakkab.
NB! Kehtida saab ainult üks eelnevatest hüpoteesidest!

[bookmark: _heading=h.3o7alnk]I ja II liiki viga, olulisuse tõenäosus, olulisuse nivoo, testi võimsus
Matemaatilises statistikas on kasutusel vastuväiteline tõestus - eeldatakse, et nullhüpotees kehtib ning hakatakse tõestama, et selle kehtimisel oleks just taoliste andmete (meie valim) esinemine või saamine väheusutav. Seejärel tehakse järeldus, et kas kehtib sisukas hüpotees või jääme nullhüpoteesi juurde. Kogu protseduuri nimetatakse lühidalt testimiseks.
Sellise lähenemise juures peame arvestama, et me võime alternatiivse hüpoteesi vastuvõtmisel teha siiski vea. Selle vea kirjeldamiseks on võetud kasutusele teatud kindel terminoloogia:
Esimest liiki viga on see, kui me võtame vastu H1, aga tegelikult kehtib ikkagi H0 (meie uuenduslik mõtteviis ei ole tegelikult õige, vaid mingi pluhv).
Teist liiki viga on see, kui võtame vastu nullhüpoteesi, aga tegelikult kehtib alternatiivne hüpotees (mis polegi üldjuhul väga suur viga). Statistilised vead tabelina kirja pandult:
	Otsus
	Populatsioonis kehtib

	
	H0 on õige
	H0 ei ole õige

	H0 mitte kummutada, jääme H0 juurde
kehtib H0
	õige otsus
	II liiki viga, beeta

	H0 kummutada, võtame vastu H1
kehtib H0
	I liiki viga, alfa
	õige otsus


Alati määratakse juba enne ülesande lahendamist kindlaks ülempiir tõenäosusele teha esimest liiki viga. Taolist ülempiiri nimetatakse olulisuse nivooks ja tähistatakse α (alfa, significance level). Vähimat olulisuse nivood, mille korral me saame alternatiivse hüpoteesi (H1) vastu võtta, nimetatakse olulisuse tõenäosuseks (p-väärtuseks) ja tähistatakse p (significance probability, p-value). Kui p-väärtus on väiksem kui meie poolt valitud olulisuse nivoo α, võime H1 vastu võtta. Teaduskirjanduses on saanud tavaks valida α=0.05 või 0.01. Järelduste esitamisel näidatakse seejuures just olulisuse p-väärtust. 
[bookmark: _heading=h.23ckvvd]Vabadusastmete arv 
Tutvume selle olulise, kuid raskesti seletatava mõistega näidete abil. Olgu üldkogumit esindav valim x1, x2, …, xn – seega meil on n vaatlust.
Kui n=1, siis sõltub üldkogumi keskväärtus üheselt sellestsamast valimi elemendist ja öeldakse, et vabadusastmete arv on 0. Sellisel juhul tegelikult ei saa mingit statistilist järeldust teha.
Kui n = 2, siis on keskväärtuse hindamisel võimalik valida liikmete x1 ja x2 vahel ja seega vabadusastmete arv on 2–1 = 1. 
Vabadusastmete arv tunnuse üldise keskväärtuse hindamisel on n-1. Vabadusastmete arvu kasutatakse statistilise analüüsi juures tavaliselt selleks, et kontrollida tulemuse olulisust (headust), seega on ta vajalik ainult üldkogumile üldistamise korral (hüpoteesipaari testimine), mitte kõikse uuringu korral. Valimimaht tulemuste korrektsuse ning headuse hindamisel on väga tähtis! Üldjuhul, kui n vaatluse põhjal on vaja hinnata m statistilist parameetrit (näiteks mõjutaval faktoril on m nivood, tahame hinnata keskväärtust iga nivoo jaoks), siis on vabadusastmete arv n-m. Iga statistilise analüüsi meetod kasutab vabadusastmete arvutamisel oma loogikat! Seega vabadusastmetest räägime ka edaspidi. Mudeli vabadusastmete arv on sõltumatute lineaarsete parameetrite arv mudelis. Vabadusastmete tähistus statistika pakettides on df –degrees of freedom. 0 vabadusastmega pole midagi üldistada. Näiteks kui meil on 3 mõõtmist, igast grupist üks esindaja, siis ei saa me kuidagi gruppide keskmisi tõsiselt võtta ega üldistusi teha, sest df=3-3=0.

[bookmark: _heading=h.ihv636]Kokkuvõte hüpoteeside testimise kohta.
[bookmark: _heading=h.32hioqz]Hüpoteesipaari ja olulisuse nivoo alfa määramine.
Nagu te esimesest loengust mäletate, peaks hüpoteesipaar olemas olema enne andmete vaatamist, see tähendab, et hüpoteesid tuleks genereerida ühe andmestiku peal või teooria (kirjanduse jms) põhjal ja testida teise peal. Tihti võib igast andmestikust välja lugeda ja otsida kuitahes keerulisi seoseid, mida keerulisem seos on, seda väiksem on tõenäosus saada see juhuslikult. Vältida tuleks keeruliste hüpoteeside püstitamist, mis sisaldavad mitmeid väiteid korraga.
Bioloogias olulisuse nivoo valitakse tavaliselt 0,05, nagu eespool mainitud. 
Hüpoteesi kontrolliks arvutatakse valimi põhjal teststatistiku väärtus (erinevate meetodite korral erinev). Statistika teooriast on teada vastava meetodi teststatistiku jaotus. Kui teststatistik on jaotusele omases piirkonnas (tavaliselt seal, kus paikneb 95% antud jaotusega juhusliku suuruse väärtustest) siis jäädakse nullhüpoteesi juurde. Piirkonda väljaspool 95% usalduspiire nimetatakse testi kriitiliseks piirkonnaks. See tähendab, et kui teststatistik langeb kriitilisse piirkonda, siis me saame H0 kummutada (ümber lükata, valeks lugeda) ja H1 vastu võtta. Vigade tegemise tõenäosused peavad olema võimalikult väikesed, eriti I liiki vea korral ja testi võimsus (tõenäosus, et test lükkab H0 ümber juhul, kui H1 kehtib) võimalikult suur.
Märkus tulemuste esitamise täpsuse kohta.
Arvuti annab teststatistikute ja tulemuste väärtused väga täpselt. Samas P-väärtusi pole mõtet esitada täpsemalt kui kahe tüvenumbriga (tüvenumber on kõik numbrid v.a. kümnendmurruna esitatud arvu alguses olevad nullid), st p<0.0012, aga mitte p<0.001278 ega ka mitte p=0.7693 - eriti viimast - selgelt mitteolulisust tõendavate p-väärtuste puhul piisab kirjutada p>0.7. Sama reegel kehtib ka muude statistikute kohta (korrelatsioonikordajad vms) - enamasti piisab kahe numbri täpsusest.
[bookmark: _heading=h.2grqrue]Teststatistikuga leiame, kas tunnuste vahel on seos, aga mitte seda, mis mida mõjutab või äkki mõjutab hoopis mingi kolmas tunnus neid mõlemaid. Üldjuhul ei saa me põhjuslikkuse kohta otsustada korrelatiivse seose põhjal (st olukorras, kus leidsime meist sõltumata olemas olnud seose). 
Jäta meelde! Seoste leidmine ja nende testimine on matemaatilise statistika põhiülesanne. Missugust analüüsimeetodit kasutada sõltub sellest, missugust tüüpi tunnuste ja faktoritega tegemist on või missuguse jaotusega on uuritav (sõltuv) tunnus.


[bookmark: _heading=h.835uwnmz9otg]2. praktikum. Hüpoteesid
[bookmark: _heading=h.a8jj039s0m2z]Näiteid hüpoteeside kontrollimise kohta
andmed=read.csv("http://haldna.ee/r/Statistika/EMU_2023.csv",
header=TRUE,sep=",", dec=".")
 attach(andmed)
Normaaljaotus: kas on sümmeetriline, 3-sigma piirides, mediaan ja keskväärtus sama suured.
Küsimus1. Kas tunnus on normaaljaotusega (n.j.)?
# H0 :on normaaljaotus
# H1 :ei ole 
shapiro.test(pikkus) #kontrollib normaaljaotust
Shapiro-Wilk normality test
data:  pikkus
W = 0.97559, p-value = 7.676e-05 (see on 0,0000767)
Antud juhul on teststatistik tähistatud W, kontrollitakse, kas ta jääb oma jaotuse  kriitiliste väärtuste vahele. Testi tulemusel saadud p-väärtus<0.05 (tahame olla kindlad 95% tõenäosusega, sellepärast võtame olulisuse nivoo 0,05) , st teststatistik läheb piiridest välja. Tõenäosus et antud valimiga võiksime jääda H0 juurde on väga väike, me peame selle kummutama, kehtib H1- ei ole n.j. 

Küsimus2. Kas varieeruvused (hajuvused) on sarnased?
H0 – varieeruvused on sarnased
H1- varieeruvused erinevad
Kas naiste ja meeste pikkuste varieeruvused on sarnased ?
bartlett.test(pikkus~factor(sugu))
fligner.test(pikkus~factor(sugu))
var.test(pikkus~factor(sugu))
   F test to compare two variances
data:  pikkus by factor(sugu)
F = 1.2049, num df = 86, denom df = 201, p-value = 0.2903
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 0.8524855 1.7480467
sample estimates:
ratio of variances 
          1.204893
Antud juhul on teststatistik F, mis on kahe dispersiooni suhe (kui see on 1, siis on arvud võrdsed). Lisaks suhtele näeme selle usalduspiire ÜK jaoks,mis on ligikaudu 0,9-1,7.Suhe ise pole täpselt 1 aga ta on 95%tõenäosusega piirides, kuhu kuulub 1. p-väärtus on > 0,05, seega- jääme H0 juurde. Võttes vastu otsuse, et kehtib H1, teeme suure vea≈30%!

[bookmark: _heading=h.5l1czh4uvz5o]Keskväärtuse leidmine koos piiridega
[bookmark: _heading=h.uirz2mz6o9jd]Keskväärtuse võrdlemine etteantud arvuga
Statistikaameti andmetel 2012. aastast on eesti naiste keskmine pikkus 165 ja kaal 69 kg
(Üliõpilaste keskmine kaal ületas ajalehe andmetel 1933.aastal eesti keskmist kaalu - meestel küündis see 69,95 kilogrammini, naistel aga 59,25ni).
Kontrollime minu tööhüpoteesi, et naistudengid (noored) on tänapäeval kergemad kui keskmine naine.
Korrektne hüpoteesipaar on järgmine:
H0: naistudengite keskmine kaal on 69
H1: naistudengite keskmine kaal on väiksem kui 69

Kirjeldamiseks piisaks sellest. Valimi keskmine kaal on: 
mean(kaal[sugu=="n"]). 
Meie tahame tulemust üldistada kõikidele naistudengitele ehk vajame usalduspiire ja p-väärtust (olulisuse tõenäosust), et H1 vastu võtta.
Selgitused:
t.test(x, mu = 0,
       alternative = c("two.sided", "less", "greater"),
       paired = FALSE, var.equal = FALSE,
       conf.level = 0.95)
mu=… siin anname ette arvu, millega võrdleme (kui mu väärtus jääb sisestamata, siis võrreldakse tunnuse keskväärtust nulliga, mis tundub mõttetu kuid annab meile usalduspiirid kätte.
alternative= …määrame, kas ühepoolne või kahepoolne alternatiivne hüpotees. Meie juhul on tegemist ühepoolsega, sest ma olen üsna kindel, et noorte kaal on väiksem. paired= ja var.equal pole antud probleemi testimisel vajalikud, neist räägime hiljem.
conf.level = 0.95 

 NB! Olulisuse nivoo on R paketis vaikimisi 0.05.

t.test(kaal[sugu=="n"],mu=69,alternative="less")
         One Sample t-test
data:  kaal[sugu == "n"]
t = -6.909, df = 201, p-value = 3.151e-11
alternative hypothesis: true mean is less than 69
95 percent confidence interval:
     -Inf 64.79287
sample estimates:
mean of x 
  63.4703 

Teststatistik on antud juhul t, selle väärtused on standardse n.j.omad, praegune väärtus on -6,9, mis kindlasti on kriitilisest väärtusest (-1,96) absoluutväärtuselt oluliselt suurem! Valimi keskmine naiste kaal on 63,4703, maksimaalselt 64,79287. Alumist piiri R ei hinda,kuna tellisime ühepoolse hüpoteesi.
p-väärtus on palju väiksem kui 0,05 (kirjutis 3.151e-11 näitab, et 3,151 tuleb 11 korda 10-ga läbi jagada,et õige p-väärtus saada, mis on praktiliselt 0).
Teistmoodi öeldes : Valimi põhjal võime öelda, et üsna tõenäoline on, et naistudendid on kergemad, kui keskmine Eesti naine.


[bookmark: _heading=h.wfdgdwk8bbxq]Keskväärtuse usalduspiiride leidmine
Aga mida näitab järgmine test?

t.test(kaal[sugu=="n"])  # väga hea võimalus arvutada keskmise usalduspiire!

Antud juhul testitakse 
H0: naiste keskmine kaal on 0, mida ta muidugi ei ole, näitab ka p-väärtus. 
H1: naiste keskmine kaal ei ole 0
Selle testi kasu ongi selles, et saame kergesti tunnuse keskväärtuse usalduspiirid kätte.
 One Sample t-test
data:  kaal[sugu == "n"]
t = 79.302, df = 201, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 61.89211 65.04848
sample estimates:
mean of x 
  63.4703

t.test(pikkus)  # leitakse kõikide tudengite keskmine kaal usalduspiiridega

Iseseisev töö. Võrdle, kas saad pikkusele samad usalduspiirid  kasutades t.testi ja  lisamaterjale lk. 55. 

[bookmark: _heading=h.auq0nlmocceb]Statistilised testid erinevate seoste analüüsimiseks
[bookmark: _heading=h.55jfrby92mcy]Hii-ruut test sagedustabeli alusel.
Tunnus ja faktor peavad olema väheste väärtustega diskreetne arvtunnused või nominaalsed tunnused, muidu pole sagedustabelil suuremat mõtet.
χ2-(hii-ruut) testi kasutamiseks on vajalik, et oodatava sagedustabeli igas lahtris oleks minimaalne kogus väärtusi (sõltub valimi mahust, kuid tavaliselt on see 5), vastasel korral ei saa me testi korrektseks lugeda. See on analoogne vabadusastmete arvu tähtsusega.
Kontrollin tööhüpoteesi, et viimastel aastatel (faktor aeg) on nais tudengeid ülikoolis rohkem kui varem.
H0 - naiste ja meeste arv ülikoolis on ajas muutumatu
H1 – naiste ja meeste arv on seotud ajalise perioodiga, ei ole sama
T1=table(sugu,aeg)  # arvutame sagedustabeli
addmargins(T1)  # lisame ääresummad ja trükime sagedustabeli välja


     aeg
sugu  2010-2015 2016-2021 2022-2023 Sum
  m          28        59        18 105
  n          55       147        30 232
  Sum        83       206        48 337

chisq.test(T1)

        Pearson's Chi-squared test

data:  T1
X-squared = 1.7656, df = 2, p-value = 0.4136


Teststatistikuks X-squared väärtus on tavapiirkonnas, sest p-väärtus on 0.4136, mis >0,05. Jääme H0 juurde.
Võimalikud joonised antud seose iseloomustamiseks:
# tulpdiagramm algsete sagedustabeli arvudega eri aegadel
barplot(T1,beside=TRUE,legend=TRUE) 
# tulpdiagramm protsentidena 
barplot(prop.table(T1,margin=2),legend=TRUE,ylab="Tudengite osakaal",xlim=c(0,4.5))



[bookmark: _heading=h.lkfvd54034zx]Protsentide võrdlemine 
Statistika teoorias kasutatakse protsendi nimetuse asemel pigem osakaal ja väärtused esitatakse 100 korrutamata ehk vahemik 0 kuni 1)
Vaatleme kaht populatsiooni, kus on leitud protsendid. Võtame näiteks haigestunute osakaal(m-haigete arv) valimis (n valimi suurus)) Tahame teada, kas  haigestunute osakaalud Tartus (p1) ja Tallinnas (p2) on statistiliselt võrreldes (valimi põhjal järeldus üldkogumile) samad.
Protsendi keskväärtuse hinnang on p=m/n, standardhälbe hinnang  
Teststatistik z on standardse normaaljaotusega Valem on järgmine:, kus  on üldine osakaalu keskväärtus. Võite huvi pärast käsitsi näidetega läbi arvutada, võttes mõlemast linnast 150 inimest, Tartus 38 haiget ja Tallinnas 42.

R-s käsk prop.test(c(m1,m2),n=c(n1,n2))
prop.test(c(38,42),n=c(150,150))
Iseseisev töö. 
1. arvuta eeltoodud valemi põhjal z=?  vt lahendust lisamaterjalidest
2. Katseta testi erinevate valimimahtude (n1,n2) ja haigetega (m1,m2)
[bookmark: _heading=h.x41xdenrv8uh]Riskide ja šansside suhe. 

Vaatleme olukorda, kus meil on binaarne faktortunnus, mille väärtus on 1, kui faktor eksisteerib ja muidu 0. Meid huvitab, kuidas see faktor mõjutab mingit teist binaarset tunnust (ehk siis teise tunnuse väärtuse 1 olemasolu). 
NÄIDE: kas suvila olemasolu (faktor=1) on taime kadumise  (tunnus=1) riskiteguriks ehk kas kohtades, kus riskifaktor esineb, on ka risk, et taim ära kaob suurem kui teistes kohtades?
Uuringu tulemused saame esitada 2 X 2 sagedustabeli kujul. Toon juurde ka tähised valemite jaoks.
	Faktor
	1
	0

	1
	a
	b

	0
	c
	d

	Tunnus->
	Taime pole
	Taim on

	Suvila on
	50
	25

	Suvilat pole
	45
	80



Taime kadumise risk suvila lähedal veekogus arvutatakse nii: (kaldkriips„ / ” tähistab jagamist!)
a/(a+b)=50/(50+25)=0,67. (taime kadumise osakaal kõikidest suvilaga juhtudest)
Kui suvilat ei ole, on taime kadumise risk
c/(c+d)=45/(45+80)=0,36. See risk on väiksem.
Riskide võrdlemiseks sobib kõige paremini nende suhe (seda nimetatakse suhteline risk ehk riskide suhe RR-Risk Ratio):
RR=0,67/0,36=1,85
ehk siis suvila olemasolu suurendab peaaegu 1,85 korda riski, et see taim sealt ära kaob.
Järgmisena vaatleme veel olulisemat näitajat (samuti 2X2 tabeli alusel), see on šansside suhe-tähistatakse tavaliselt OR-Odds Ratio.

Šanss on tunnuse jaoks 1 ja 0 väärtuse esinemiste suhe: a/b ja c/d ehk siis taime pole vs taim ja suvila on vs suvilat pole. Šansside suhe on siis järgmine (kaks suhet korraga valemis!).Taime pole vs taim on sõltuvalt suvila olemasolust. 
(a/b)/(c/d )= ad/bc.
Hindame praegu puuduvate taimedega kohtade ja olemasolevate taimedega kohtade suhet suvilatega ja suvilateta juhtude korral:
OR=(50/25)/(45/80)=3.55. Šanss, et taime suvila olemasolu korral enam ei ole, võrreldes selle võimalusega, et taim on alles, on 3,5 korda suurem.

R-s käsk fisher.test(sagedustabeli nimi).

Sisestame käsitsi sagedustabeli ja teeme testi.
TT<-matrix(c(50,25,45,80),nrow=2,byrow=TRUE,dimnames=list(c("Suvila on","Suvilat pole"),c("Taime pole","Taim on")));TT

fisher.test(TT)  # kas suhe tuli sama, mis käsitsi arvutades?

Teeme läbi mõne näite ka tudengite andmetega.
andmed=read.csv("http://haldna.ee/r/Statistika/EMU_2023.csv",header=TRUE,sep=",", dec="."); attach(andmed)
# vaatame andmetabeli nimesid (tunnuseid ja faktoreid)
names(andmed)   
# näeme nimedele lisaks R poolt määratud tunnuste tüüpe 
str(andmed)  #chr on character ehk tekst      
#Andmete sisse lugemisel saab vajadusel lisada tunnustele tüübid (Excelis näiteks ei saa arvulise tunnuse korral määrata, et see oleks faktortüüpi) 
# Võimalusi on mitmeid, mõistlik on mingi endale selgeks teha ja siis seda kasutada
#1. Tunnuse tüübi muutmine andmestikus, juhuks kui nominaalset (chr-character) tunnust soovime kasutada faktortunnusena
andmed$sugu=factor(sugu)
andmed$kool=factor(kool)
andmed$tase=factor(tase)
andmed$eriala=factor(eriala)
str(andmed)# uued tüübid määratud 
võimalik on ka lühem variant 
tase=factor(tase) # määrang kehtib kuni R sulgeme
Sama teisendust on võimalik teha ka vahetult enne seda, kui vajadus tekib.
# 2. muudame osalise valiku tunnuste tüüpe, peamiselt on vaja muuta arvulised tunnused faktoriks
# järgnev näide on selle kohta, kuidas uus andmestik või tunnus tekitada nii, et säilivad mõlemat tüüpi - nii arvuline kui ka faktor tüüpi tunnuse versioon
andmed2 <- within(andmed,{
Fsugu <- factor(sugu,labels=c("mees","naine"))
Fvene <- factor(vene)
Finglise <- factor(inglise)
})
str(andmed2)
Binaarse tunnuse ja faktori (2 X 2 sagedustabeli) šansside suhte test

T2=table(sugu,aeg) ;T2
fisher.test(T2)
> T2=table(sugu,aeg) ;T2
    aeg
sugu 2010-2015 2016-2021 2022-2023
   m        28        59        18
   n        55       147        30
> fisher.test(T2)

        Fisher's Exact Test for Count Data
data:  T2
p-value = 0.403
alternative hypothesis: two.sided

Eri ajaperioodidel ei ole naiste ja meeste osakaaludel vahet, sest p-väärtus >0.05

[bookmark: _heading=h.gefvow3r6q5j]Keskväärtuste võrdlemine. T-test
Üksteisest sõltumatute tunnuste keskväärtuste võrdlemine. Faktor peab olema binaarne ja tunnus pidev arvuline. Test väljastab populatsioonide keskmised ja keskmiste erinevuse usalduspiirid.
t.test(biolpunkte~tase)
> t.test(biolpunkte~factor(tase))
        Welch Two Sample t-test
data:  biolpunkte by factor(tase)
t = -0.45936, df = 245.53, p-value = 0.6464
alternative hypothesis: true difference in means between group bak and group mag is not equal to 0
95 percent confidence interval:
 -3.536804  2.199093
sample estimates:
mean in group bak mean in group mag 
         78.65833          79.32719 

Sõltuvate tunnuste keskväärtuste võrdlemine. Objektid on mõlema valimi korral samad! Tehakse paralleelsed mõõtmised. Faktor peab olema binaarne ja tunnus pidev arvuline. Test väljastab erinevuse ja selle usalduspiirid. Parim võimalus “enne-pärast“ muutuse uurimiseks. NB! Sõltuvate tunnuste korral tuleb kontrollida, et vahed leitaks ikka paarikaupa, st andmed enne-pärast paikneksid kõrvuti.
[bookmark: _heading=h.7hcbxh1i3yus]Mitteparameetrilised testid
Normaaljaotus pole oluline. Võrreldakse kahe populatsiooni väärtuste nn paiknemist. 
Wilcoxoni sõltumatute valimite test 
wilcox.test(biolpunkte)~tase)

Wilcoxoni sõltuvate valimite test (objektid samad). Analoogne tellimine nagu  t-testiga.
Märgitest. Kui populatsioonid ei erine, siis peaks paari viisi (sõltuvad valimid!) tehtud vaatluste erinevuste hulgas olema plusse (st.vahe on suurem kui 0) ja miinuseid (vahe <0) olema võrdselt. Näide: R abil (15-plusside arv, 24 -koguarv, 0,5- tõenäosus (tahame teada, kas on võrdselt). Loendus andmetega saab ka märgitesti teha. 24 inimesest 15 olid haiged, H1= kas see on rohkem kui pooled (p=0,5 ehk 50%)?  
binom.test(15,24,p=0.5)  # proovi teiste arvudega ka
[bookmark: _heading=h.f8zb1w5bb8ec]Korrelatsioonitestid

Pearsoni korrelatsioonikordaja hinnang (lineaarse seose tugevuse näitamiseks pidevate tunnuste korral. Korrelatsioonikordaja r arvutamisel tunnused ei pea olema normaaljaotusega, kuid usaldusväärselt korrektse järelduse sõltuvuse olemasolu kohta saame teha siiski ainult normaaljaotuse korral.Korrelatiivne sõltuvus on vastastikune, faktori ja tunnuse vahetamine ei muuda seost.Kui tunnused on sõltumatud, on seosekordaja väärtus 0, kuigi üldjuhul sellest, et r = 0 , ei saa järeldada, et tunnused on üleüldse statistiliselt sõltumatud.
Spearmani ehk astak korrelatsioonikordaja väärtus sõltub mitte tunnuse väärtusest, vaid tema väärtuse järjekorranumbrist valimis, seetõttu on ta vähem sõltuv erinditest (keskmisest kaugel olevatest punktidest). Siin võib tunnus olla mistahes jaotusega ning järeldus sõltuvuse kohta on korrektsem kui Pearsoni r korral.
kor_andmed=andmed[,-c(1,4,10:13)]
maatriks=round(cor(kor_andmed, use="pairwise.complete.obs"),2)
maatriks
cor.test(pikkus,kaal,method="pearson") 
cor.test(pikkus,kaal,method="spearman")
cor.test(pikkus,kaal)  # mis see on?

        Pearson's product-moment correlation

data:  pikkus and kaal
t = 15.301, df = 287, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.601400 0.729252
sample estimates:
      cor 
0.6702697 

Iseseisev töö, kirjuta välja korrelatsiooni näite H0 ja H1.

Vaatame jooniseid
plot(pikkus,kaal)
plot(kaal~pikkus)

# vaatame kolme erinevat joonist kõrvuti
par(mfrow=c(1,3)) 
plot(pikkus,kaal,main="plot(pikkus,kaal)")
plot(kaal,pikkus,main="plot(kaal,pikkus)")
plot(kaal~pikkus,main="plot(pikkus~kaal)")
#Lisame ühikud telgedele
plot(kaal~pikkus,main="Kaalu seos pikkusega",ylab="Kaal, kg",xlab="Pikkus, cm")

#muudame graafiku akent, kui vaja

pairs(kor_andmed)

# Kodus läbitegemiseks

install.packages("corrplot") # lisapaketi installeerimine

library(corrplot)            # lisapaketi aktiveerimine

#Korrelatsioonimaatriksi graafiliseks esitamiseks 

corrplot(maatriks) 

################## KOLMAS TEEMA ##############################
[bookmark: _heading=h.u7cufrym0aqq]
[bookmark: _heading=h.ihahe83ngucj]Lineaarsed mudelid
[bookmark: _heading=h.19c6y18]Sissejuhatus
Enne statistilise andmetöötluse kallale asumist on väga tähtis üldkogumi õige määratlemine ja mõjutavate faktorite olemasolu uurimine. Looduses on faktorid omavahel tihedas seoses. Sõltuvalt uurija eesmärkidest on faktorite omavahelise käitumise (seoste) ja üldse kogu faktorkompleksi  kindlaksmääramine  üks olulisemaid eelsamme statistilisele analüüsile. Näiteks kui uurijat huvitab mingi kahe järve vaheline erinevus, siis niisama öelduna võib selle erinevuse all mõista mida tahes. Olles paika pannud uuritava tunnuse (näiteks sinivetikate biomassi), ei saa erinevust enne leidma hakata, kui oleme määratlenud lisaks järve nimele veel olulised faktorid, näiteks aeg (aasta, sesoonsus), sügavus proovikohas, koht – kas kaldaala, keset järve jnejne. Kui mõlemal järvel pole samade faktori tasemete juures mõõtmisi teostatud, või on ühel järvedest mõõtmise ajal olnud mingid ekstreemsed olud, ei ole korrektset analüüsi tulemust võimalik saada. Rääkides faktorite mõjust, tuleb kindlasti arvestada, et lisaks iga faktori enda mõjule (peaefekt) on tihti tegu koosmõjudega (interactions), mis tähendab seda, ühe faktori mõju sõltub sellest, mis nivool on parasjagu teine faktor. Näiteks võib selguda, et sinivetika biomass kevadel sõltub veekihist, aga suvel ei sõltu. 
Faktorite vahel eristuvad alluvussuhted ja ristseosed 
Öeldakse, et faktor A allub faktorile B, kui A on üheselt määratud vaid koos faktoriga B Näiteks proovipunkt (mingi number) allub konkreetsele järvele. Sellisel juhul esineb faktori A iga nivoo koos vaid ühe faktori B nivooga. Punkt allub järvele tähendab, et igal järvel nummerdatakse punktid uuesti, mistõttu faktor 'Punkt' ei oma mõtet ilma järve näitamata.
Alluvusseose vastand on ristseos. Öeldakse, et faktorid A ja B on ristseoses, kui A iga nivoo kombineerub (saab põhimõtteliselt kombineeruda) B kõigi nivoodega. Näit. prooviruut ja aasta on ristseoses, kui iga ruutu on uuritud igal vaatlus aastal (st tegemist on püsiruutudega). Ristseoses olevatest faktoritest kummagi tähendus ei olene teise tähendusest. Alluvusseos ja ristseos on erijuhud üldisemast seosest, kus lõplik arv faktoreid moodustavad faktor kompleksi.
Tavaliselt uurija tahab testida uuritava tunnuse muutumist või erinevusi just konkreetseid faktorkomplekse varieerides või muutes. Kui faktoreid üldse arvesse ei võeta, kirjeldab tunnuse dispersiooni hinnang tema koguvarieeruvust üldkogumis. Lisades faktoreid, saame suurendada tunnuse hinnangu täpsust (st. vähendada tunnuse enda sisemist varieeruvus). Ideaalne on, kui suudaks kõikide faktorite mõju arvesse võtta. 
Faktorite mõjude uurimisele peab eelnema täpne probleemi püstitus, kus üheselt määratletakse faktorite mõjude (efektide) tähendus. Põhimõtteliselt moodustavad tunnuse väärtuse järgmised komponendid:
1. üldine keskmine tase μ (“müü”) (s.o nullnivoo, üldkeskmine, populatsiooni keskväärtus, ooteväärtus vms.);
2. fikseeritud faktorite mõjud (nt faktori ‘sugu’ mõju, kui isased keskmiselt erinevad emastest);
3. juhuslike faktorite mõjud (nt prooviruutude juhuslikud erinevused);
4. faktorite koosmõjud ehk interaktsioonid (nt ühe veekogu kalade arv sõltub temperatuurist rohkem kui teise oma);
5. objekti omaduste sarnasus temale ajaliselt või ruumiliselt lähedaste objektidega (nt piki transekti liikudes on lähedalasuvad ruudud sarnasemad kui kauged, püsiruudu jälgimisel on ruudu seisund lähiaastatel sarnasem kui suurema ajavahemiku järel); vastavad mõjud on nn korduvmõõtmiste mõjud;
6.  tunnuste omavaheline sõltuvus ehk tunnuste vahelised korrelatsioonid.
7. paljud tundmatud kontrollimatud faktorid, mida andmestikus ei ole registreeritud ja mis avalduvad kui mõõtmisvead, katse vead, juhuslikud vead vms.
Kõiki neid mõjurite liike tuleks arvestada ja kõiki neid saab ka hinnata. Statistika üheks põhiprobleemiks on tunnuse kujunemise mehhanismi selgitamine. Ülesanne on keeruline, sest kõiki faktoreid ei ole võimalik kirja panna, ehkki nende mõju summeerub tunnuse väärtuse kujunemises. Statistika ülesandeks on mõjude sasipuntrast lahti harutada iga üksiku faktori roll. Matemaatiliselt on faktorite mõjud (faktorite efektid) arvulised suurused, mille lisamine (juurde liitmine) suurendab või vähendab tunnuse väärtust. Kõik need mõjud on võimalik arvesse võtta, kui me uuritava tunnuse jaoks koostame mudeli, kus liidame erinevad mõjud kokku. Sellest ka nimetus üldised (arvestatakse erinevaid mõjusid korraga)  lineaarsed (mõjud liidetakse) mudelid. 
Veekord statistilise analüüsi põhimõttest.
Milles seisneb matemaatilise statistika mõte hüpoteeside püstitamisel ja nende vastuvõtmisel?
Arvutatakse valimi põhjal mingi statistiku väärtus (eri jaotuste korral kasutatakse oma statistikut). Nullhüpoteesi kehtivuse korral on selle statistiku väärtused teada. Need on toodud kas tabelites (raamatutes olevates tabelites on antud enimkasutatavate olulisuse nivoode korral) või statistilise tarkvarapaketi (nt R) korral saame mistahes olulisuse nivood välja arvutada.
Võrreldes meie andmete põhjal saadud statistikut tabeli omaga, näeme, kas andmed on sellised, et nullhüpotees kehtib. Tavaliselt on nii, et kui meie arvutatud statistiku väärtus on tabelis olevast suurem, siis pole meie andmed sellised nagu nullhüpoteesi korral ja me võime etteantud olulisuse nivool sisuka, ehk alternatiivse hüpoteesi (H1) tõestatuks lugeda. Programmipaketid annavad meile väljatrükituna ka olulisustõenäosuse p, seega me ei peagi ise neid statistikuid võrdlema, vaid saame p järgi teada, kui suur on maksimaalne viga, kui me alternatiivse hüpoteesi vastu võtame. Mida väiksem p, seda kindlamad me oleme, et alternatiivne hüpotees kehtib ehk meie valimi põhjal saadud tulemus ei ole juhuslik. Kui p-väärtus (p-value) on suurem kui olulisuse nivoo, siis teeme me oluliselt vale otsuse H1 vastu võttes, ehk kehtib hoopis H0.

[bookmark: _heading=h.1mrcu09]Mudelite hindamise printsiibid
Mudelitest räägitakse juhtudel, kui tahetakse uuritava tunnuse jaoks kirja panna ja testida igasuguste võimalike argumenttunnuste (faktorite) mõjusid. Juhul kui tegu on pidevate tunnustega, kus üht saab teise põhjal prognoosida, kasutatakse lihtsat regressioonanalüüsi mudelit. Lihtne lineaarne mudel näeb välja järgmine:
Y=a+bX+ε          (mudel),
kus Y ja X on juhuslikud suurused (meie tunnuste vektorid).
a ja b leidmiseks saame minimiseerimisülesande,
∑εi2 =min∑(yi-(a+bxi))2
s.t. prognoosivead peavad olema võimalikult väikesed. Eelnev valem sobib lihtsa regressioonimudeli (mudelis on ainult 1 faktor X) jaoks. Antud meetodit nimetataksegi vähimruutude meetodiks mudeli parameetrite (valemis a ja b) leidmisel. 
[bookmark: _heading=h.1i0b6jiul2bh]Mudeli hindamise meetodid
Vähimruutude meetod (VRM, inglise keeles ) nõuab: mudeli argumenttunnuste ees olevate kordajate väärtused tuleb valida sellised, et katse käigus mõõdetud sõltuva tunnuse ja mudeli abil prognoositud sõltuva tunnuse väärtuste vahelised erinevused oleksid minimaalsed. Näitajaks, mis seda minimaalsust iseloomustab, on erinevuste ruutude summa, kuna erinevused ise on nii negatiivsed, kui ka posiivsed ning nende summa on alati 0.
Parima mudeli valikul vaadatakse determinatsioonikordaja suurust ja prognoosijääke uurimisel, et nad oleksid minimaalsed, sõltumatud, ühtlase varieeruvusega (vt hajuvusdiagrammi) ning ligikaudu normaaljaotusega. Eeldusi saab kontrollida kas graafiliselt või shapiro testi abil. 
Üldistatud vähimruutude meetod. 
Selle meetodi korral otsitakse ikkagi vähimate jääkidega mudelit, kuid loobutakse nõudest, et jäägid peavad olema omavahel sõltumatud. Üldine mudel on ikka sama, nagu VRM korral eespool, kuid jääkide korrelatsioonimaatriks ei ole enam diagonaalmaatriks. Kasutatakse peamiselt kordusmõõtmistega ja juhusliku faktoriga mudelite korral.
Suurima tõepära meetod (STM, inglise keeles ).
Antud meetodi korral huvitab meid, missuguste parameetri väärtuste β ja σ korral oleks olemasoleva valimi tekkimise tõenäosus kõige suurem.Tõepärafunktsioon – kirjeldab jaotust valimi põhjal, ehk leiab tõenäosuste korrutised iga valimi elemendi korral. Matemaatiliselt tähendab see, et tõepärafunktsioonist leitakse osatuletised ja võrdsustatakse nulliga. Tekib võrrandisüsteem, mille lahenditeks ongi otsitavad parameetrite väärtused. Igal jaotusel on oma tihedus- ja tõepärafunktsioon ning kui meil on jaotus teada, siis on suurima tõepära hinnangud kõige täpsemad.
Mudeli valikul kasutatakse kooskõlakordajate suurust (näiteks Akaike ehk lühidalt AIC), mida väiksem see on, seda paremini mudel algandmetega (valimiga) kooskõlas on. 
[bookmark: _heading=h.3k4zlwvkn1vp]Mudelite võrdlemine
Mudeli optimaalse keerukuse määramiseks tuleb sageli läbi vaadata mudelite hierarhiline rida, mis algab väga lihtsa mudeliga (kõige lihtsam on üheparameetriline konstantne mudel, mille ainsaks parameetriks on üldkeskmine) ja iga järgmine mudel on eelmise mudeli täiustatud variant. Uurides jääkide varieeruvuse vähenemist selles reas, saab enamasti leida mudeli, millest keerulisem ennast ei õigusta. Teine võimalus on panna mudelisse niipalju argumenttunnuseid kui pähe tuleb ning siis sammhaaval kontrollida, kas neid ühekaupa välja jättes saame parema mudeli.
Näitajaks, mis iseloomustab mudeli sobivust andmetega on Akaike’ kooskõlakordaja. Hea võimalus erinevaid mudeleid võrrelda on dispersioonanalüüsi ( R käsu abil: anova(mudel1, mudel2)), vastuseks on p-väärtus hüpoteesile H0: mudelid ei erine, ehk siis funktsioontunnuse hajuvust kirjeldavad mõlemad mudelid ühtemoodi. H1, teine mudel on oluliselt parem.
[bookmark: _heading=h.3tbugp1]Lihtne regressioonimudel
Vaatame kõige lihtsamat mudelit. Olgu meil kaks pidevat tunnust (juhuslikud suurused X ja Y), saame leida nendevahelised erinevad seosekordajad. Näiteks lineaarse korrelatsioonikordaja, mille väärtused võivad olla -1 ja +1 vahel ja mille võrdumine nulliga tähendab, et korrelatiivset sõltuvust tunnuste vahel ei ole.
Kui seosekordaja on oluliselt nullist erinev ehk seos on olemas, saame edasi uurida, missugune see seos täpsemalt on. Tähendab, iseloomustada, milline matemaatiline funktsioon seda seost kõige paremini kirjeldab. Oletame, et meid huvitab ühe muutuja väärtuse prognoosimine teise muutuja väärtuse järgi. Näiteks et kui pikkus on teada, siis milline on tõenäoline kaalu väärtus. 
[bookmark: _heading=h.1nziq4x7pifz]Mõisted.
Regressioonsirge - seose esitus lihtsa lineaarse funktsioonina ehk graafiliselt.
Regressioonimudel- regressioonisirge võrrand.
Prognoos on x-muutujale vastav y-väärtus, mis asub täpselt regressioonisirgel ja on mudeli põhjal välja arvutatav.
Prognoosijääk on algse, mõõdetud väärtuse ja prognoositud väärtuse vahe iga objekti korral. Jätame meelde, et prognoosi jääke nimetatakse ka prognoosi vigadeks, või mõnikord lihtsalt mudeli vigadeks vmt.
Võtame näiteks juhu, kus X on pikkus ja Y on kaal. Mudeliks on sel juhul valem 

ehk matemaatilises keeles                          (mudel 1)
või iga objekti jaoks                ,
kus i on objekti järjekorranumber andmetabelis. 
1) kaal ja pikkus võetakse andmetabelist.
2) a ja b on tundamatud mudeli parameetrid, mis on vaja hinnata nii, et mudeliga saadud kaalu prognoosid iga objekti jaoks erineksid tabelis olevatest kaalu väärtustest võimalikult vähe.
Regressioonimudeli korral on kõige paremad vähimruut hinnangud, st minimeeritakse jääkide ruutude summa. .
Seega on vaja leida selline joon, mis läbib andmepilve ( so hajuvusdiagramm-plot), nii et x-teljega risti mõõdetud kauguste summa igast punktist selle regressioonisirgeni oleks minimaalne (vähimruutude meetod). Ehk siis nii, et jääkide (residual) ruutude summa oleks minimaalne. 
Sobitatud sirgel on kaks parameetrit : algordinaat (intercept, a) ja tõus (slope, b). 
Algordinaat ehk vabaliige näitab, kus sirge lõikab y-telge (ehk siis milline on sõltuva tunnuse y väärtus, kui sõltumatu tunnus x=0). 
Regressioonisirge tõus näitab, kui mitme ühiku võrra muutub y-telje muutuja väärtus kui x-telje muutuja väärtus muutub ühe ühiku võrra. 
Seose puudumisel on sirge tõus null. Sirge tõus on ühikuga suurus, tema ühikuks on y-telje muutuja ühik jagatud x-telje muutuja ühikuga, näiteks siis kilogrammi sentimeetri kohta.
Teine seose tugevuse näitaja on R2- determinatsioonikordaja, mis näitab, kui suure osa uuritava tunnuse hajuvusest kirjeldab argumenttunnuse abil koostatud regressioonivõrrand. Võib öelda, et see näitab ka mudeli prognoosivõimet. Ühe argumenttunnusega regressioonmudeli determinatsioonikordaja on argumenttunnuse ja uuritava tunnuse vahelise korrelatsioonikordaja ruut. 
[bookmark: _heading=h.46r0co2]Teisendatud funktsioon- ja argumenttunnused
Enimkasutatavad transformatsioonid on:
Y’=log(Y) – logaritmimine, log2(Y)-kahendlogaritm,log10(Y)-kümnendlogaritm;
Y’=Y a , astendamine mistahes astendajaga (astendaja 0,5 on ruutjuur, astendaja „-1“ on pöördteisendus jne)
Algskaalasse tagasi teisendamine:
kui oleme teinud sõltuva tunnuse transformatsiooni, näiteks Y’ = log(Y);
ja leidnud seejärel ilusa mudeli mis kirjeldab Y’ ja X vahelist seost,
näiteks:Y’ = 0.6 + 2*X + jääk
siis peame Y’ teisendama tagasi algskaalasse, saamaks mudelit Y-le:
Y’ = log(Y);
seega 					Y  = exp(Y’)
Ja kogu mudeli jaoks:
Y = exp(Y’) = exp(0.6+2*X)=exp(0.6)* exp(2)X                      (2)
[bookmark: _heading=h.111kx3o]Binaarse funktsioontunnusega mudelid ehk logistilise regressiooni mudelid.
Kui meil oleks mitu mõjutavat faktorit, siis pole tegemist enam 2 X 2 tabeliga ning kasutama peaks mitmest (mitme sõltumatu tunnusega) regressioonanalüüsi. Lihtne lineaarne regressioonanalüüs siinkohal ei sobi eriti hästi, sest jäägid ei tule enamasti normaaljaotusega, parameetrite hinnangute olulisused (nullist erinevused) ei ole korrekstelt määratud ning mudeli tulemusi on raske interpreteerida, tihti ei jää prognoosid 0-1 vahele (peame meeles, et algtunnus oli selline, mis oli ainult 0 või 1). 
Kasutatakse logistilist regressioonimudelit, millega hinnatakse tõenäosust, et uuritava tunnuse väärtus on 1. 
PEA MEELES! Kui P on sündmuse tõenäosus, siis on sündmuse šanss.
Huvi pakub selline uuritav tunnus, millel on ainult 2 võimalikku väärtust: esineb/ei esine, jah/ei. Väärtused kodeeritakse sellisel juhul 0-1 skaalasse nii, et tõenäosus, et tunnusel on väärtus 1 (jah, esineb) on P, siis tõenäosus, et  tunnusel on väärtus 0 (ei esine, ei) on 1-P (üks nendest sündmustest kindlasti toimub).
Olgu meil siis Y selline, mille väärtused on positiivsete vastuste arv m , kusjuures tehtud on n katset. Kui need väärtused on sõltumatud siis on Y binoomjaotusega, parameetritega n, m  ja P. Y väärtused võivad olla mistahes mittenegatiivsed arvud, meil on vaja teisendust, mis viiks need skaalasse [0,1], kuna soovime prognoosida tõenäosust.
Toon siinkohal kõige enam kasutatava teisenduse, nimetatud LOGIT: log(P/(1-P)) . Sellist mudelit nimetatakse ka logistilise regressiooni mudeliks, välja näeb ta järgmine:
logit(P)=log(P/(1-P))=a+bX.				(3)
Olgu P1 tõenäosus, et Y väärtus on 1 samal ajal, kui X=1 (risk esineb)
 P2 olgu tõenäosus, et Y väärtus on 1 samal ajal, kui X=0 ,
siis šansside suhe on 
Mudelit (3) saab hinnata suurima tõepära meetodiga, ehk leitakse sellised regressioonikordajate hinnangud, mille tulemusena hinnatud tõenäosuste P1 ja P2  saamine on antud valimi korral kõige tõenäolisem. Tulemuste interpreteerimisel peame arvestame teisenduse sisu, ehk hinnatud b näitab tegelikult šansside suhet ehk seda, kuidas muutuvad sündmuse šansid, kui X muutub ühe ühiku võrra. Antud juhul on see muutus exp(b) kordne.
[bookmark: _heading=h.4k668n3]Segamudel
Tutvustan antud teemat väga lühidalt püüdes anda võimalikult head praktilist infot. Meenutuseks, igas lineaarses mudelis (isegi ilma faktorita mudelis, mida on võimalik koostada) on vähemalt kaks juhuslikku liiget– uuritav tunnus, kui populatsiooni juhuslikul väljavõtul (valimil) sooritatud mõõtmiste tulemusi koondav suurus ja juhuslik viga (tekkinud mistahes põhjusel). Näiteks ilma faktorita mudeli puhul hinnatakse tunnuse keskväärtus (juhuslik) ja selle vead ehk hälbed ehk jäägid (juhuslikud) valimi väärtustest.
Antud aine piires vaatame segamudeleid, kus on sees juhuslikud faktorid ja kus tunnuste väärtused objektidel võivad olla omavahel kuidagimoodi korreleeritud. Mõlemal juhul on tegemist kordusmõõtmistega. 
Lineaarse mudeli jääkide kohta kehtib nõue, et need peavad olema omavahel sõltumatud, siis on tegemist adekvaatse mudeliga. Segamudelite teooria aga võimaldab arvesse võtta jääkide omavahelist korreleeritust, ning veel enam - seda korreleeritust saab ka hinnata. Jääkidest räägime siinjuures sellepärast, et mudelis esitatud liikmetega (erinevad faktorid ja nende koosmõjud) me üldjuhul saame faktorite mõjud arvesse võtta, jäägid sisaldavad teatavat lisainformatsiooni. Jääkide sõltuvus peegeldab vaatluste omavahelist sõltuvust, pärast seda, kui kõik teadaolevad faktorid on juba arvesse võetud. 
Millal tuleks valida segamudel? Millal tekivad korreleeritud andmed?
1. Mitmesugused aegread, näiteks fosfori sisalduse muutus ajas (ajaliselt lähemad vaatlused on korreleeritud rohkem)
2.  mitmetasandiliste mudelite korral, kui tegemist on alluvus suhetega. Sama „ülemuse“ „alluvad“ korreleerivad omavahel rohkem, kui erinevate omad.
3. Segamudelid aitavad objektide vahelised seosed lahti kirjutada juhul, kui tegemist on näiteks juhuslike proovivõtu kohtadega (järved, prooviruudud, katsepõllud jne), st. meid ei huvita ühe või teise konkreetse koha mõju ja erinevused teistest (sellisel juhul kasutatakse tavalist dispersioonanalüüsi mudelit ja selle võimalusi erinevusi hinnata), vaid üldiselt asukoha mõju. 
Järveuuringud 
1. Peipsi järve mudelis on arvesse võetud ajalised ja ruumilised faktorid: aasta trendid, sesoonsus, koordinaadid, sügavus, nende koosmõjud. Samas näitab jääkide uurimine, et teatav ruumiline sõltuvus vaatluste vahel eksisteerib vaatamata kõikide faktorite arvestamisele. Segamudel, mis sisaldab ruumilise korrelatsiooni hindamist näitas, et tegelikult ongi vaatlused omavahel kuni 75 kilomeetri ulatuses korreleeruvad - lähemal asuvad rohkem ja kaugemad vähem
2. Uurides, kas kirpvähi arvukus sõltub sügavusest, võetakse proove mitmest eri kohast järvel. Antud juhul kuulutame asukoha juhuslikuks, sest meid ei huvita niivõrd iga konkreetse asukoha mõju, kui just see, et saaks arvesse võetud fakt, et samast kohast tehtud vaatlused võivad olla sarnasemad. Mõte selles, et me ei võimendaks asukoha mõju üle, vaid uuriks ikka algset hüpoteesi- kas sügavus mõjutab?
Meditsiin. Uuritakse ravimi mõju patsiendile (juhuslik faktor), tuleb arvesse võtta patsiendi eripära ja seda, et kui mõõtmised tehakse korduvalt, on sama inimese tulemused korreleeritud. 
Haridus. Õpilaste õppeedukuse, edasijõudmise jms uuringud. Arvestada tuleb, et sama kooli ja klassi õpilased on sarnaste tulemustega (õpetaja mõju) ja jälle kui katset või küsitlust korratakse, siis peab arvestama, et õpilane ise on endaga sarnane.

[bookmark: _heading=h.pqjer4hg8f98]3. praktikum. Lineaarsete mudelite kasutamine
[bookmark: _heading=h.n5lvw8954okq]Lihtne regressioonimudel
Hindame mudeliga üldfosfori (PTOT) ja mineraalse fosfori (PO4P) vahelist seost ja arvutame mõned prognoosid.
fosfor<-read.table("http://ph.emu.ee/~haldna/Statistika/CY_naide2.csv", sep=",", dec=".", header=TRUE, na.strings=c("NA", "")) 
names(fosfor);attach(fosfor)
summary(fosfor)
punkt=factor(punkt)

# kontrolli, millised PTOT ja PO4P väärtused on üldse andmebaasis olemas, vaata ka jaotust!
hist(PTOT)
hist(PO4P) # kas on n.j.?
cor.test(PTOT,PO4P)  # kas lin.korrelatsioon on oluline

plot(PTOT~PO4P)
lin_mudel=lm(PTOT~PO4P)
summary(lin_mudel)

# arvutame prognoosid paberil käsitsi või kalkulaatori abil
# üldfosfor=....+....*fosfaat 
# R abil
> mudel=lm(PTOT~PO4P);summary(mudel)
Call:
lm(formula = PTOT ~ PO4P)
Residuals:
    Min      1Q  Median      3Q     Max 
-44.159 -12.137  -6.517   7.783  98.980 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   32.481      4.868   6.672 6.17e-09 ***
PO4P           1.734      0.247   7.019 1.50e-09 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 25.1 on 66 degrees of freedom
Multiple R-squared:  0.4274,    Adjusted R-squared:  0.4188 
F-statistic: 49.27 on 1 and 66 DF,  p-value: 1.496e-09
Mida siit väljatrükist kasutame? Üldmudeli Y=a+b*X jaoks on meil olemas a ehk Estimate Intercept (32.481) ja b ehk PO4P järel olev Estimate (1.734).Prognoosimiseks tuleks täpsustada, millise X ehk PO4P jaoks me PTOT prognoosi saada tahame. Võtame näiteks, PO4P(ehk X)=10. 
Sellisel juhul PTOT(ehk Y)= 32.481+1.734*10=32.481+17.34=49.821
Väljatrükist näeme ka R2 ehk determinatsioonikordaja väärtust 0.4274.Seega prognoosib PO4P  ligikaudu 43% PTOT varieeruvusest, prognoosi täpsus ei ole suur. Korrektne lähenemine eeldab prognoosi usalduspiiride lisamist.

# Joonis, kõigepealt hajuvusgraafik uuesti
plot(PTOT~PO4P)
abline(lin_mudel)

#Prognooside leidmiseks teeme valiku argumenttunnuse (PO4P) väärtustest.
# Nendele leiab R on prognoosi, usaldusvahemiku ja prognoosi vahemiku.
# Lihtsa regressioonimudeli korral piisab kahest etteantud väärtusest,
# võtame näiteks minimaalse ja maksimaalse PO4P ja lisaks 10, kontrollimaks, kas arvutasime eespool õigesti.

uued=c(min(PO4P),10,max(PO4P))
prognoos=predict(lin_mudel,data.frame(PO4P=uued))
prognoos #vaatame prognoose
us_piirid=predict(lin_mudel,data.frame(PO4P=uued),interval="conf")
us_piirid # vaatame prognoose koos 95% usalduspiiridega

us_piirid
        fit       lwr       upr
1  35.94803  26.97688  44.91919
2  49.81646  43.18440  56.44853  so prognoos PO4P=10 korral
3 133.02703 111.15191 154.90215

pr_piirid=predict(lin_mudel,data.frame(PO4P=uued),interval="pred")
pr_piirid # vaatame prognoose koos 95% prognoosi vahemikega
# Joonis, kõigepealt hajuvusgraafik uuesti
plot(PTOT~PO4P)
abline(lin_mudel) 
#  NB!abline(lin_mudel) annab sama, kuid seda tehakse vaid ühe faktoriga # mudeli korral
lines(uued,prognoos)
lines(uued,us_piirid[,2],lty=2);lines(uued,us_piirid[,3],lty=2)
lines(uued,pr_piirid[,2],lty=3);lines(uued,pr_piirid[,3],lty=3)


[bookmark: _heading=h.nanxpchug664]Mudel teisendatud uuritava tunnusega
[bookmark: _heading=h.stcvvdqzxlwu]Logaritmimine
# logaritmimine aitab uuritavat tunnust normaaljaotusele sarnasemaks muuta
# vaatame 2 histogrammi kõrvuti

par(mfrow=c(1,2))
hist(PTOT);shapiro.test(PTOT)
hist(log(PTOT));shapiro.test(log(PTOT))
log_mudel=lm(log(PTOT)~PO4P);summary(log_mudel) # R2 on suurem
Call:
lm(formula = log(PTOT) ~ PO4P)
Residuals:
     Min       1Q   Median       3Q      Max 
-1.13627 -0.17221 -0.01861  0.21524  0.86302 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 3.472950   0.071829  48.350  < 2e-16 ***
PO4P        0.030607   0.003707   8.257 6.14e-12 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3788 on 70 degrees of freedom
Multiple R-squared:  0.4934,    Adjusted R-squared:  0.4862 
F-statistic: 68.18 on 1 and 70 DF,  p-value: 6.139e-12
Prognoos PO4P=10 korral arvutame valem (2)lk  ja R abil (tuletuskäik)
exp(3.466227+0.030607*10)  #see on summary väljatrükist, piisav edasiseks
exp(3.466227)*exp(0.030607*10)  # siin teisendame edasi

# prognoosid ja joonis algskaalas
uued2=c(0,10,20,40,50,60) # võtame rohkem X ehk PO4P väärtusi
prognoos2=exp(predict(log_mudel,data.frame(PO4P=uued2))) # tagasiteisendus
prognoos2
us_piirid2=exp(predict(log_mudel,data.frame(PO4P=uued2),interval="conf"))
pr_piirid2=exp(predict(log_mudel,data.frame(PO4P=uued2),interval="pred"))
plot(PTOT~PO4P)
lines(uued2,prognoos2,col=2)  # siin ei kasuta enam abline
lines(uued2,us_piirid2[,2],lty=2);lines(uued2,us_piirid2[,3],lty=2)
lines(uued2,pr_piirid2[,2],lty=2);lines(uued2,pr_piirid2[,3],lty=2)

#Normaaljaotuse kontroll
hist(residuals(log_mudel))
shapiro.test(residuals(log_mudel))

Iseseisev töö, tee joonis logaritm-skaalas.
prognoos3=predict(log_mudel,data.frame(PO4P=uued2))
.....

[bookmark: _heading=h.8nk6584xxsn9]Polünoomiga lähendamine.
Vaatame sinivetika biomassi sesoonsust (muutusi aasta sees).
1) Võtame faktoriks d1, mis on „päeva number aastas”, lineaarsena (eeldame, et päeva numbri suurenedes sinivetikate biomass suureneb)
hist(CY);hist(log(CY))# kas on n.j.?
plot(log(CY)~d1)

mudel1<-lm(log(CY)~d1);summary(mudel1)
Call:
lm(formula = log(CY) ~ d1)
Residuals:
    Min      1Q  Median      3Q     Max 
-4.4171 -1.1025  0.2576  1.3051  2.9438 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -3.803632   0.760824  -4.999 4.50e-06 ***
d1           0.021423   0.003634   5.895 1.41e-07 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.64 on 66 degrees of freedom
Multiple R-squared:  0.3449,    Adjusted R-squared:  0.335 
F-statistic: 34.75 on 1 and 66 DF,  p-value: 1.407e-07

hist(residuals(mudel1))
shapiro.test(residuals(mudel1))

plot(d1,residuals(mudel1), main=" Lineaarse mudeli jäägid")
lines(lowess(d1,residuals(mudel1)))

Mudel1 jäägid on ikka veel d1-st sõltuvad. Hea mudeli korral ei tohiks nii olla. Teiseks paistab jooniselt, jääkide trendijoon on parabooli moodi, mis vihjab sellele, et faktori (argumenttunnuse) d1 mõju võiks testida tema astendamise teel.[image: ]

2) võtame päeva numbri aastas ruutu (tekib parabool)

mudel2<-lm(log(CY)~ poly(d1, 2);summary(mudel2)
Call:
lm(formula = log(CY) ~ poly(d1, 2))
Residuals:
    Min      1Q  Median      3Q     Max 
-3.6543 -0.5587 -0.0275  0.6187  2.7918 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)    0.5247     0.1407   3.730 0.000389 ***
poly(d1, 2)1   8.7086     1.1936   7.296 3.86e-10 ***
poly(d1, 2)2 -10.0652     1.1936  -8.432 3.24e-12 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.194 on 69 degrees of freedom
Multiple R-squared:  0.6431,    Adjusted R-squared:  0.6328 
F-statistic: 62.17 on 2 and 69 DF,  p-value: 3.651e-16

hist(residuals(mudel2))
shapiro.test(residuals(mudel2))

plot(d1,residuals(mudel2), main=" Lineaarse mudeli jäägid")
lines(lowess(d1,residuals(mudel2)))
Nii mudelite determinatsioonikordajad kui ka jääkide hajuvusdiagramm näitavad, et ruutvõrrand sobib paremini.
mudel3=glm(log(CY)~poly(d1,3));summary(mudel3)
anova(mudel2,mudel3, test="Chisq") 
#mudel3 pole parem
#Edasi ei ole enam mõtet uusi d1 astmeid juurde panna. Mudel2 on parim.
#Märkus: kui mudelisse tuleb lisada väga suure astendajaga liikmeid, võivad kergesti tekkida probleemid arvutustäpsusega, sellepärast ongi aasta number päevas enne programmeerimist jagatud 100-ga (d1 on vahemikus 1,12-3,19) 

Leiame mõlema mudeli jaoks 100 prognoosi vahemikus 1. aprillist aasta lõpuni
x=seq(1, 3.65, length=100)
y1=predict(mudel1, data.frame(d1=x), type="response")
y2=predict(mudel2, data.frame(d1=x), type="response")
#Kanname leitud prognoosid juba valmisolevale joonisele lines-käsu abil:
plot(d1, log(CY))
lines(x,y1, lwd=1, col=1)
lines(x,y2, lwd=1, col="red") 
# teisendame CY prognoosid algskaalasse tagasi exp-funktsiooniga
plot(d1, CY)
lines(x,exp(y1), lwd=1, col=1)
lines(x,exp(y2), lwd=1, col="red")
[image: ]

Lõpuks vaatame üht võimalust, kuidas R funktsiooni step abil suurest faktorite hulgast olulisi leida.
names(fosfor)
max_mudel=lm(log(CY)~osa+kuu+poly(d1,2)+NTOT+PTOT+CAE+MGE+O2+TEMPproov+PH_LF+ZB)  
max2=step(max_mudel,direction="both",test="Chi")
summary(max2) # parim mudel
Call:
lm(formula = log(CY) ~ poly(d1, 2) + PTOT + CAE + TEMPproov)
Residuals:
     Min       1Q   Median       3Q      Max 
-2.86373 -0.57526  0.04029  0.53927  2.14931 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -4.885276   1.680285  -2.907  0.00496 ** 
poly(d1, 2)1  8.320888   1.205994   6.900 2.44e-09 ***
poly(d1, 2)2 -2.566526   2.381547  -1.078  0.28510    
PTOT          0.019737   0.004692   4.207 7.98e-05 ***
CAE           1.138513   0.640869   1.777  0.08026 .  
TEMPproov     0.139139   0.048213   2.886  0.00527 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.044 on 66 degrees of freedom
Multiple R-squared:  0.7388,    Adjusted R-squared:  0.719 
F-statistic: 37.33 on 5 and 66 DF,  p-value: < 2.2e-16

Otsus, milline mudel on eelmisest parem, tehakse AIC ehk Akaike’ kooskõlakordaja abil. Antud juhul kontrollis funktsioon mõlemat pidi faktorite lisamist ja ärajätmist. Ühe veeproovi kõik näitajad võivad olla mingil moel seotud. Oma kogemuse põhjal ma soovitan step funktsioonile eelnevalt teha argumenttunnuste kohta eeluuringuid, vaadata nende omavahelisi korrelatsioone, kas kõikidel objektidel on faktorite väärtused ühtlaselt mõõdetud jne. Parima mudeli juures näeme, et d1 ruutu võtmine võib-olla polegi väga tähtis, sest näiteks temperatuur ja üldfosfor võivad käituda sama moodi. 

[bookmark: _heading=h.csl11nl49w6d]Logistiline regressioon

#uus andmestik, uurime tigude hävitamise efektiivsust erinevaid mürke ja #mõjuaegasid kasutades, samuti niiskuse ja temperatuuri eri tasemetel.
# loendatud on surnud tigude arv 20st.
[bookmark: _heading=h.206ipza]tigu<-read.csv("http://haldna.ee/r/Statistika/tigu.csv")

#abivahend, valmiskirjutatud funktsioon, mis arvutab sansside suhte välja koos usalduspiiridega.Tõsta kogu järgnev punane tekst R programmi!
expcoef <- 
function(modelfit) {
OR <- exp(coef(modelfit))
cov.coef <- summary(modelfit)$cov.unscaled # covariance matrix
p <- summary(modelfit)$coef[,4]
SE.coef <- sqrt(diag(cov.coef))
CI95.lo = OR*exp(-1.96*SE.coef)
CI95.up = OR*exp(+1.96*SE.coef)
cbind(OR=round(OR,2),CI95.lo=round(CI95.lo,2),CI95.up=round(CI95.up,2),p=round(p,4))
 }

Pane tähele, mis on antud juhul uuritav tunnus- s.o kaks tunnust koos kõrvuti pandult (mitu korda sündmus toimus, mitu korda ei)!

pyes=cbind(suri,elus); pyes
mud=glm(pyes~Liik+Moju+Niiskus+Temp,family=binomial);summary(mud)
anova(mud,test="Chisq")  # testime, millised faktorid on olulised
expcoef(mud)
              OR CI95.lo CI95.up      p
(Intercept) 0.25    0.04    1.64 0.1478
LiikB       3.70    2.69    5.10 0.0000
Moju        4.50    3.68    5.50 0.0000
Niiskus     0.90    0.87    0.92 0.0000
Temp        1.10    1.06    1.14 0.0000
Näiteks liik B korral on suremise sanss 3,7 korda suurem kui liik A korral (sellega toimub vaikimisi võrdlus). 




######################   Neljas teema  ####################
[bookmark: _heading=h.41dw38k7y62m]Dispersioonanalüüs.
Ühefaktoriline dispersioonanalüüs on t-testi üldistus või ehk täpsemalt on t-test  dispersioonanalüüsi (analysis of variance, siit siis üldtuntud lühend ANOVA) erijuht. Dispersioonanalüüsi eelis on see, et võrreldavaid rühmi ( mõjutava faktorite tasemeid, või ka katsetingimusi, populatsioone) võib olla rohkem kui kaks. 
Miks mitte teha palju t-teste? Esimene mõte võiks ju selline olla, võrdlemaks rühmi paarikaupa ja kui näiteks juba üks selline võrdlus viitab statistilisele olulisuse, et siis olekski nagu tõestatud, et rühmade vahel erinevus on. Sellise järelduse korral on aga põhimõtteline probleem: kui me teeme suure hulga teste, siis on üsna tõenäoline, et mõned testid ületavad valitud olulisuse nivoo (tavaliselt siis α=0.05) juhuslikult. Seega - mida rohkem paarikaupa t-teste teeme, seda suurem on oht, et teeme vale järelduse uuritava mõju olemasolu kohta olukorras, kus seda mõju tegelikult ei ole. Sellise probleemi lahendamiseks ongi ANOVA!
Tüüpiline statistiline nullhüpotees ANOVA korral väidab, et tunnuse jaotus ei sõltu ühegi konkreetse faktori väärtusest. Dispersioonanalüüsiga otsitakse vastust küsimusele, kas valimi rühmakeskmiste erinevus on põhjustatud faktori mõjust või ainult valimi juhuslikkusest. Populatsiooni ulatuses indiviidid varieeruvad just seetõttu, et nad on mõjutatud faktorite poolt. Lahutades indiviidide koguvarieeruvuse (dispersiooni) üksikute faktorite poolt põhjustatud varieeruvuse komponentideks, saame iga faktori mõju testida. Dispersioonanalüüsi ideoloogia kohaselt on nii, et kui mingi faktor, mis tegelikult tunnuse varieeruvust mõjutab, mudelist välja visata, võtavad teised mudeli osad selle mõju enda kanda. Enamasti on selleks jääk ehk prognoosiviga. Valimi analüüsi tulemusel leitakse F statistik, mille põhjal e, kas is F põhjal leitakse olulisuse tõenäosus p, nii nagu t järgi t-testi puhul. Teststatistik (antud juhul F) ja olulisuse tõenäosus on omavahel seotud statistiku- jaotusfunktsiooni kaudu, ning neid jaotusfunktsioone on jällegi erinevaid vastavalt vabadusastmete arvule. Seega on F-st p arvutamisel oluline vabadusastmete arv, need kirjutatakse tekstis sageli F-i indeksitena. ANOVA mudeli vabadusastmed on määratud võrreldavate faktori tasemete arvu (k) poolt: k-1 ja jääkhajuvuse vabadusastmete arv vaatluste arvu (n) poolt (n-k-1).
Erinevad mudelite tüübid
I tüüpi dispersioonanalüüs vaatleb mudelite hulka, kus algne mudel on konstantne, iga faktori lisamisel testime, kas uus mudel kirjeldab funktsioontunnust paremini, ehk kas jääkide ruutude summa oluliselt väheneb. II tüüpi dispersioonanalüüs omistab igale faktorile just selle osa faktorite kogumõjust, mida teised faktorid ära ei kirjelda. Erinevalt I tüüpi analüüsist pole siin tähtis faktorite mudelissse lisamise järjekord. III tüüpi dispersioonanalüüs on kõige universaalsem, kus faktorite summaarne mõju jagatakse “õiglaselt” kõikide faktorite vahel. Faktorite lisamise järjekord pole tähtis. Praktikumides vaatleme peamiselt viimast varianti.
Veel mõned mõisted: tasakaalustatud ja tasakaalustamata mudel- esimesel juhul on iga faktori tasemel tehtud sama arv mõõtmisi. Varasemast teada, aga väärivad siinkohal kordamist: fikseeritud faktor- mõõtmisi on tehtud faktortunnuse igal tasemel (eeldab, et tasemeid on vähe). Juhuslik faktor- mõõtmised on tehtud mingil juhuslikul arvul tasemetel (pidev).
[bookmark: _heading=h.zbhdo1xjoed6]Dispersioonanalüüsi eeldused.
1) ANOVA puhul eeldame, et võrreldavate rühmade sees on vaatlused normaaljaotusega ja lisaks veel,
2) jaotuste dispersioonid on võrdsed. See eeldus pole väga range - st väike kõrvalekalle ei põhjusta suuri probleeme (dispersioonid peavad suisa kordades erinema, et see tulemust tuntavalt mõjutaks). 
Jaotuse uurimiseks piisab vaadelda visuaalselt (graafikul).
Suured vead tulemuste tõlgendamisel võivad tekkida sellest, kui mõned üksikud väärtused on faktori kindla taseme sees oma keskmistest väga kaugel. See on tõsine probleem - üksikud tugevasti hälbivad punktid võivad kergesti testi tulemused pea peale keerata. Sellised mõõtmised tuleks kui erindid välja jätta.. Siis võiks näiteks tunnust teisendada (logaritmida, võtta ruutjuur vmt). Teine süstemaatilise segaduse variant on selline, kus valimite keskmised ja hajuvused on omavahel seoses, enamasti siis nii, et suurema keskmisega kaasneb suurem hajuvus.Kokkuvõttes: enne statistiliste analüüside tegemist vaata oma andmeid, st tee enda jaoks pilte, millelt näed jaotused ära. Muuhulgas ka sellel põhjusel, et trükiviga (nt koma vales kohas) on kerge sisse jääma ja võib palju segadust ja valesid järeldusi tulla.

[bookmark: _heading=h.1egqt2p]Lihtne ja koosmõjudega dispersioonanalüüs
[bookmark: _heading=h.2dlolyb]Ühefaktoriline dispersioonanalüüs.
Ühefaktoriline dispersioonanalüüs (one way ANOVA) on selline, kus andmestik on rühmadeks jagatud vaid ühe faktori alusel. Selle faktori väärtusi (ehk siis faktori tasemeid, ehk võrreldavaid rühmi võib olla siiski loetud, pigem väike arv. Igal faktori tasemel peaks olema piisavalt mõõtmisi ja need peaksid olema pidevad arvulised väärtused.
[bookmark: _heading=h.3cqmetx]Mitmefaktoriline dispersioonanalüüs 
annab olulist lisainformatsiooni võrreldes olukorraga, kus teeme mitu erinevat ühefaktorilist, igai faktori jaoks eraldi. Seda eriti siis kui me näiteks kahefaktorilises ANOVAs uurime ühe faktori mõju olukorras, kus teise faktori mõju on juba arvesse võetud. Ehk teisisõnu, igasuguse mitmefaktorilise mudeli puhul sõltub (üldjuhul, ühest erandist hiljem) iga üksiku faktori statistiline olulisus sellest, millised muud faktorid seal mudelis on. 
Võimalik on testida ka erinevate faktorite koosmõjusid:
Ristfaktorid. Need võetakse mudelisse, kui on alust arvata, et ühe faktori iga tase kombineeritult teise faktori tasemetega mõjutavad uuritavat tunnust erinevalt.
Hierarhilised faktorid – ühe faktori iga nivoo jaoks võetakse teise faktori nivoode komplekt. Öeldakse, et teine faktor allub esimesele (näiteks klassi number koolis).

[bookmark: _heading=h.aza46esmz64i]4. praktikum. Dispersioonanalüüs

Näide teravilja saagikuse kohta seoses väetamisega. Uued andmed sisse.

data=read.csv("http://haldna.ee/r/Statistika/fosfor_disp.csv", sep=",", dec=".", header=TRUE)
attach(data)
interaction.plot(P,N,saagikus)
Siin samamoodi, erinevate N nivoode korral sõltub saagikus P suurenemisest erinevalt
[image: ]
anova_mud=aov(saagikus~factor(N)+factor(P)+(factor(N)*factor(P)))
summary (anova_mud)
> summary (anova_mud)
                    Df Sum Sq Mean Sq F value   Pr(>F)    
factor(N)            2    705   352.5  16.568 3.02e-05 ***
factor(P)            3   4954  1651.2  77.601 1.71e-12 ***
factor(N):factor(P)  6    556    92.7   4.357  0.00411 ** 
Residuals           24    511    21.3   
    
N, P ja N-P koosmõju on olulised

Järgneva käsuga saame faktorite nivoode paarikaupa võrdluste tulemused 

TukeyHSD(anova_mud)
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = saagikus ~ factor(N) + factor(P) + (factor(N) * factor(P)))
$`factor(N)`
         diff       lwr       upr     p adj
4-2  9.916667  5.213872 14.619461 0.0000612
6-2  8.750000  4.047206 13.452794 0.0002909
6-4 -1.166667 -5.869461  3.536128 0.8109215
$`factor(P)`
          diff        lwr       upr     p adj
4-2 23.3333333 17.3347735 29.331893 0.0000000
6-2 28.7777778 22.7792180 34.776338 0.0000000
Jne ….
Näide: keskmine saakide vahe N=4 ja N=2 korral on 9.916667, 95% tõenäosusega on erinevus piirides [5.213872;14.619461]. p-value on 0.0000612, mis tähendab seda, et see vahe erineb nullist juhuslikult väga väikese tõenäosusega ( p-väärtus on kindlalt väiksem kui α=0.05). Seega me saame oma valimi põhjal väita, et kui lämmastik on 4, siis saak on umbes 10 tonni võrra suurem kui N=2 korral.
Keskmiste väljatrükk iga faktori taseme jaoks
model.tables(anova_mud,"means")

Teeme sama uuringu lineaarse mudeli funktsiooni lm abil

lm_mud=lm(saagikus~factor(N)+factor(P)+(factor(N)*factor(P)))
summary (lm_mud)

> summary (lm_mud)

Call:
lm(formula = saagikus ~ factor(N) + factor(P) + (factor(N) * 
    factor(P)))

Residuals:
    Min      1Q  Median      3Q     Max 
-7.6667 -2.8333 -0.6667  3.4167  6.3333 

Coefficients:
                      Estimate Std. Error t value Pr(>|t|)    
(Intercept)             48.667      2.663  18.274 1.37e-15 ***
factor(N)4              10.667      3.766   2.832  0.00921 ** 
factor(N)6               5.000      3.766   1.328  0.19682    
factor(P)4              20.667      3.766   5.487 1.22e-05 ***
factor(P)6              21.667      3.766   5.753 6.28e-06 ***
factor(P)8              33.667      3.766   8.939 4.19e-09 ***
factor(N)4:factor(P)4   -2.667      5.326  -0.501  0.62118    
factor(N)6:factor(P)4   10.667      5.326   2.003  0.05664 .  
factor(N)4:factor(P)6   10.000      5.326   1.877  0.07266 .  
factor(N)6:factor(P)6   11.333      5.326   2.128  0.04383 *  
factor(N)4:factor(P)8  -10.333      5.326  -1.940  0.06421 .  
factor(N)6:factor(P)8   -7.000      5.326  -1.314  0.20120    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.613 on 24 degrees of freedom
Multiple R-squared:  0.9241,    Adjusted R-squared:  0.8893 
F-statistic: 26.55 on 11 and 24 DF,  p-value: 9.046e-11

> anova(lm_mud)
Analysis of Variance Table

Response: saagikus
                    Df Sum Sq Mean Sq F value    Pr(>F)    
factor(N)            2  705.1  352.53 16.5679 3.017e-05 ***
factor(P)            3 4953.6 1651.19 77.6014 1.710e-12 ***
factor(N):factor(P)  6  556.3   92.71  4.3573  0.004113 ** 
Residuals           24  510.7   21.28                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Kalad=read.csv("http://haldna.ee/r/Statistika/kalasaagid.csv", sep=",", dec=".", header=TRUE, na.strings=c("NA", ""))
attach(Kalad)
names(Kalad);summary(Kalad)  # tutvun andmetega
# mitu taset on faktortunnustel ja kui palju on igas mõõtmisi?

table(liik);table(aasta);table(koht) 

# Vaatame faktorite võimalikku mõju püügikogusele (tunnus pyyk) graafiliselt. Kas mediaanid ja kvartiilid on erinevad? 

boxplot(pyyk~liik)
boxplot(pyyk~aasta)
boxplot(pyyk~liik*aasta)
# Tee ise joonis faktori koht mõju vaatamiseks.

# Ühefaktoriline dispersioonanalüüs. Mudelis aasta faktor.

mud1a=aov(pyyk~factor(aasta));summary(mud1a)  # aasta mõju

mud1l=aov(pyyk~liik);summary(mud1l)   # liikide erinevus

# prognoosimise näide

predict(mud1l, data.frame(liik=c("liik_1","liik_2","liik_3","liik_4")),interval="confidence")
model.tables(mud1l,"means")
# aritmeetilised keskmised liikide kaupa
akesk=tapply(pyyk,liik,mean) # prognoosid langevad kokku 
sdh=tapply(pyyk,liik,sd)  # standardhälbed

# Kahefaktoriline dispersioonanalüüs. Mudelis aasta ja liik.

mud2=aov(pyyk~factor(aasta)+liik);summary(mud2)

               Df   Sum Sq  Mean Sq F value   Pr(>F)    
factor(aasta)   4 79538348 19884587  116.81  < 2e-16 ***
liik            3  5725041  1908347   11.21 8.22e-07 ***
Residuals     192 32685065   170235  

faktor(aasta) kirjeldab püükide väärtuste varieeruvusest 67,5%

sum=79538348+5725041+32685065 
79538348/sum*100
5725041/sum*100     #Kui suure osa kirjeldab liik?              

# uurime liigi ja aasta koosmõju

interaction.plot(aasta,liik,pyyk)
mud3=aov(pyyk~factor(aasta)*liik);summary(mud3)   
                    Df   Sum Sq  Mean Sq F value   Pr(>F)    
factor(aasta)        4 79538348 19884587 114.540  < 2e-16 ***
liik                 3  5725041  1908347  10.992 1.16e-06 ***
factor(aasta):liik  12  1436259   119688   0.689     0.76    
Residuals          180 31248806   173604                     

Koosmõju pole oluline (p=0,76, mis on kindlalt suurem kui 0,05)

Paarikaupa võrdlused Tukey järeltestiga
TukeyHSD(mud2)

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = pyyk ~ factor(aasta) + liik)

$`factor(aasta)`
               diff       lwr         upr     p adj
2014-2013   421.450   167.380   675.51997 0.0000854
2015-2013   487.000   232.930   741.06997 0.0000035
2016-2013  1762.175  1508.105  2016.24497 0.0000000
2017-2013   107.000  -147.070   361.06997 0.7741763
2015-2014    65.550  -188.520   319.61997 0.9539095
2016-2014  1340.725  1086.655  1594.79497 0.0000000
2017-2014  -314.450  -568.520   -60.38003 0.0070492
2016-2015  1275.175  1021.105  1529.24497 0.0000000
2017-2015  -380.000  -634.070  -125.93003 0.0005374
2017-2016 -1655.175 -1909.245 -1401.10503 0.0000000

$liik
                 diff        lwr        upr     p adj
liik_2-liik_1 -366.20 -580.06227 -152.33773 0.0000897
liik_3-liik_1 -291.60 -505.46227  -77.73773 0.0028655
liik_4-liik_1   10.52 -203.34227  224.38227 0.9992575
liik_3-liik_2   74.60 -139.26227  288.46227 0.8027031
liik_4-liik_2  376.72  162.85773  590.58227 0.0000523
liik_4-liik_3  302.12   88.25773  515.98227 0.0018300

2014. aasta pyyk on keskmiselt (kõik kalaliigid kokku võetuna) 421 ühikut suurem, kui 2013 aasta oma. Erinevus on oluline, vahemikus [167,38;675,52] üldkogumi jaoks. 2017.aasta pyyk oli  314,45 ühikut väiksem kui 2014.aasta oma. 
Veel üks võimalus mudeli põhjal tunnuse pyyk keskmiste arvutamiseks faktori nivoode kaupa.

model.tables(mud2,"means")
Tables of means
Grand mean
       
2885.6 

 factor(aasta)
2013 2014 2015 2016 2017 
2330 2752 2817 4092 2437 

 liik
liik_1 liik_2 liik_3 liik_4 
3047.4 2681.2 2755.8 3057.9 

Leia ise aastate keskmised pyyk väärtused (kasuta mudelit mud1a prognoose või  .



[bookmark: _heading=h.2r0uhxc]Kokkuvõte 
Mistahes mudeli analüüsi käigus tuleb lahendada erinevaid ülesandeid:jagada laiali!!
1) hinnata mudeli parameetreid ja nende statistilist usaldusväärsust
regressioonimudeli parameetrid leitakse vähimruutude meetodil. Ühese regressiooni puhul on need XY- tasandil kujutatud punktiparve läbiva sirgjoone parameetrid: vabaliige ja sirge tõus. Parameetrite usaldusintervalli hinnatakse t-testi abil. 
b) hinnata mudeli olulisust (hüpoteeside kaudu) 
Mudeli olulisuse hindamiseks kasutatakse dispersioonanalüüsi. 
Funktsioontunnuse Y koguhajuvus (ruutude summa) SSüld jaotatakse prognoositud väärtuste (mudeli) poolt kirjeldatavaks hajuvuseks SSmudel ja jääkhajuvuseks SSjääk.
Mudeli olulisust hinnatakse Fischeri testi abil (mitte ajada segamini sagedustabeli arvutamiseks kasutatava Fisheri testiga!), kusjuures kontrollitakse sisukat hüpoteesi, mis väidab, et mitmene korrelatsioonikordaja Y ja X vahel on nullist erinev:. Kui mudel ei osutu oluliseks, siis on tunnuse Y parimaks prognoosiks tema keskväärtus. Eraldi võib testida ka kõigi regressioonikordajate statistilist olulisust. Mudel osutub oluliseks, kui vähemalt üks kordajatest  β1, β2, …., βp osutub oluliseks. 
c) Mudeli kirjeldusvõime hindamine. Olenevalt mudeli kordajate leidmise ja hindamise printsiibist tehakse mudeli headuse (kirjeldus- või prognoosivõime) kohta järeldus erinevalt: vähimruutude meetodi korral mitmese korrelatsioonikordaja ruudu ehk determinatsioonikordaja R2 abil ja suurima tõepära meetodi korral Akaike’ kooskõlakordajat järgi.
Determinatsioonikordaja võib muutuda väärtuste 0 ja 1 vahel. Millise R2 väärtuse korral regressioonimudel kõlblikuks lugeda, sõltub konkreetsest ülesandest ja andmestikust. Mudelisse argumenttunnuseid ehk faktoreid lisades determinatsioonikordaja alati suureneb. Vajalik on lisakontroll, kas faktor ikka oli oluline! 
Akaike kooskõlakordaja võib olla mistahes arv, parima mudeli korral on see arvtelje mõttes vähim, st ka miinusskaalal, mitte absoluutväärtuselt. -3 on väiksem kui -2. Siin ei ole alati nii, et mida rohkem faktoreid mudelisse panna, seda parem mudel on.
 (10) Meil on 2 mudelit, esimene sisaldab 2 faktorit (Akaike=2,4) ja teine 3 faktorit (Akaike=3,2). Kumb mudel on prognoosimise jaoks parem?
d) Jääkide analüüs 
Mudeli adekvaatsuse hindamisel on oluline koht mudeli jääkide analüüsil.
Statistilises mõttes korrektse mudeli juhuslikud vead (jäägid) peaksid olema
a) sõltumatud
b) keskväärtusega 0 ja konstantse standardhälbega (võimalikult väikesega!)
c) alluma normaaljaotusele N(0, σ2).


[bookmark: _heading=h.1664s55]5. praktikum. Mitmemõõtmelise analüüsi meetodid
[bookmark: _heading=h.3q5sasy]Peakomponentanalüüs 
Inglise keeles principal components analysis, üldiselt tuntud, artiklites tihti kasutatud lühend PCA. R käsk princomp
Peakomponentanalüüsi korral moodustatakse algtunnuste kombinatsioonidena nn peakomponendid sedamoodi, et leitakse iga tunnuse jaoks mingi kordaja (arvuline) nii, et lineaarne kombinatsioon kõikide tunnuste korral kirjeldaks ära võimalikult suure osa algtunnuste vektori hajuvusest. Iga järgmine peakomponendi leidmisel arvestatakse sellega, et ta oleks eelmistest sõltumatu. Nii saadake järjest sama palju peakomponente, kui on tunnuseid. Iga uus komplekt tunnuseid, mis omavahel korreleeruvad peavad korreleeruma eelmiste peakomponentidega minimaalselt. Viimased peakomponendid on omamoodi tähtsad selles mõttes, et nemad on kõige vähem hajuvust kirjeldavad, ehk siis kõige “paiksemad” (stabiilsed kõigi objektide jaoks). Neid nimetatakse ka struktuuriindeksiteks (-komponentideks). 
Põhilised tulemused, mida peakomponentanalüüs annab: 
1) saab kontrollida, kas esialgne tunnusvektor on mitmemõõtmelise normaaljaotusega; 
2) kasutades esimesi peakomponente on võimalik andmestik projekteerida tasandile (või ka kolmemõõtmelisse ruumi ja uurida andmestikku graafiliselt. 
3) peakomponentanalüüs on aluseks paljudele mitmemõõtmelistele analüüsimeetoditele (ka selle kursuse järgnevatele meetoditele ) 
Mida vaadata peakomponentanalüüsi korral: 
1) missugused tunnused korreleeruvad ühe või teise peakomponendiga (laadungid-loadings) 
2) kas peakomponendid kirjeldavad olulise osa hajuvuses- korrelatsioonid? 
# Mitmemõõtmelise analüüsi eesmärgiks on leida paljude arvtunnuste põhjal mingi uus tunnus, 
# mis ühendab endas omavahel tugevasti seotud tunnused.
# Tavaliselt on selleks uueks tunnuseks algsete tunnuste lineaarne kombinatsioon.
##Vaatame kõigepealt peakomponentanalüüsi
#Järgmise käsuga kutsume välja uue paketi (sama mis library)
# järgnev peaks olema algses R versioonis juba installeeritud,kontrolli üle, vt Packages- Load package...
require(stats)
peipsi=read.table("http://haldna.ee/r/Statistika/fyke2.csv",header=TRUE,sep=",", dec=".")
names(peipsi)
attach(peipsi)
# Kui andmestikus on erinevate mõõtühikutega ja varieeruvusega tunnused, 
# siis on soovitav kasutada peakomponentanalüüsi tegemiseks korrelatsiooni-maatriksit
# valime välja ainult arvtunnused
mydata=peipsi[,c(7:14,16,18,24,25)]  
cor_m=cor(mydata) # arvutame korrelatsioonimaatriksi 
library(corrplot)  #pakett korrelatsioonimaatriksi 
Korrelatsioonimaatriksi graafiliseks esitamiseks
corrplot(cor_m)
# mustvalge joonis, mida suurem täpp, seda tugevam korrelatsioon
mv <- colorRampPalette(c("white", "black"))
corrplot(cor_m, col = mv(2), order="hclust", outline=TRUE,  tl.col="black", tl.cex=0.9)
#paarikaupa hajuvusdiagrammid, mida oleme juba varem vaadanud ja mis ei vaja lisapakette
pairs(mydata[2:8])
library(car)   # parem võimalus, koos seose analüüsiga
scatterplotMatrix(cor_m[,c(2:8)],  diagonal="histogram")
# Venitame Console akna laiemaks!
# Teeme peakomponentanalüüsi, kasutades korrelatsioonimaatriksit, 
# NB! me ei pea sisestama korrelatsioonimaatriksit , vaid tellime cor=TRUE
pkomp <- princomp(mydata, cor=TRUE,scores=TRUE)
summary(pkomp)           
  # peakomponentide tähtsus hajuvuse kirjeldamisel
plot(pkomp,type="lines", main="Peakomponentide poolt kirjeldatud varieeruvus")      
# peakomponentide laadungid
loadings(pkomp)               
# peakomponentide väärtused arvutatakse iga objekti jaoks (skoorid)
pkomp$scores                
biplot(pkomp) 
# skooride lisamine andmetabelile, kaks esimest peakomponenti
andmed$PCA1 <- pkomp$scores[,1]
andmed$PCA2<- pkomp$scores[,2]
# peakomponente saab kasutada edaspidi nagu arvtunnuseid, testides nende keskmisi erinevusi, trende jms
# mistahes faktorite kaupa
# vaatame näiteks, kas 1.peakomponent on kuude kaupa erinev
boxplot(andmed$PCA1~kuu)
summary(lm(andmed$PCA1~kuu))


[bookmark: _heading=h.kgcv8k]Faktoranalüüs 
factorial analysis R käsk factanal 
Faktoranalüüsi eesmärk on eelnevalt käsitletud peakomponentide arvu oluline vähendamine, eesmärgiga leida võimalikult hästi (ka sisuliselt) eraldatavad faktorid, mis annaksid siiski edasi võimalikult suure osa informatsioonist. 
Faktoranalüüs on hüpoteeside genereerimise meetod, tema puhul ei ei tehta tunnuste kohta erilisi eeldusi ega tõestata suurt midagi. Uurija ise peab määrama faktorite arvu, meetodi ja ka pööramismeetodi (kui faktorid algselt ei moodusta hästi eraldatavaid tunnuseid, on olemas meetodid, kuidas faktorid eriti “eraldatavateks” muuta). 26 
Tulemuste tõlgendamine: analüüs annab uute tunnuste kordajad ja korrelatsioonid algtunnuste ja uute tunnuste vahel. Korrelatsioonikordajate abil saame teada, missugused algtunnused on rohkem uute komponentidega ( faktoritega) seotud. 
Faktoranalüüs annab meile: 
• faktorkaalud e. –laadungid (loadings), mis näitavad tunnuse ja faktori vahelist korrelatsiooni 
• faktormudeli poolt saavutatud faktorite kirjeldusmäära, mis näitab , kui suure osa algsest hajuvusest konkreetne faktor ära kirjeldab 
• tunnuse kirjeldatuse määr ehk kommunaliteet, mis näitab konkreetse tunnuse kirjeldatust mudeli poolt , 
• individuaalsed faktorkaalud ( factor score), mis võimaldavad arvutada iga objekti jaoks mudeli põhjal uue väärtuse. 

#Tellime faktoranalüüsi, kuna peakomponentanalüüsi
#omaväärtustest 3 olid üle 1, proovime, kas 3 faktorit on piisav kirjeldamaks
#kogu andmestikku
fit <- factanal(mydata, 3, rotation="varimax")
print(fit, digits=2, cutoff=.3, sort=TRUE)
# H0 - 3 faktorit on piisav. Mis on p-väärtus, mis on järeldus?

#KIRJUTA SIIA PARIM FAKTORANALÜÜSI MUDEL -proovimise teel
# peaks olema võimalikult vähe faktoreid, aga samal ajal piisav arv
# Jätka parima mudeliga, nimi jäta samaks või pane tähele, kuhu nimi käib!

load <- fit$loadings #faktorlaadungid
plot(load,type="n") # plot factor 1 by 2
text(load,labels=names(mydata),cex=.7) # lisame tunnuste nimed
#Mida faktorkaaludega (iga objekti jaoks faktori väärtus) teha saab? 
fit2 <- factanal(mydata, 4, rotation="varimax",scores="regression")
faktorid=data.frame(fit2$scores)
koos=cbind(andmed,faktorid)
attach(koos)
boxplot(Factor1~kuu)
boxplot(Factor1~aasta)
# Vaatame, kuidas on seotud 1.peakomponent ja esimene faktor (paistab, et ainult märk on vastupidine).
# selgust saame, kui uurime faktorite laadungeid.
plot(Factor1,andmed$PCA1)
# Ka  järgnevalt saab faktoranalüüsi tellida, 
#kui ei ole andmeid, vaid ainult korrelatsioonimaatriks!
#f1<-factanal(factors =5, covmat=cov_m)
Kokkuvõtteks peakomponentanalüüs, kirjeldav faktoranalüüs ja kanooniline korrelatsioonanalüüs põhinevad ideel, et suurest hulgast objekte iseloomustavatest tunnustest moodustatakse väiksem arv omavahel mittekorreleeruvaid tunnuseid, mis kirjeldaksid ära võimalikult suure osa varieeruvusest. Eelduseks on see, et mingid algtunnused omavahel korrelleeruvad. Nende analüüside aluseks on kas algtunnuste korrelatsioonimaatriks või kovariatsioonimaatriks. Viimast ei tohiks kasutada, kui andmed ei ole mõõdetud samas skaalas. Algtunnused nende analüüside jaoks standardiseeritakse: keskväärtus võetakse võrdseks nulliga ja dispersioon ühega. Üldjuhul eeldatakse algtunnuste mitmemõõtmelist normaaljaotust. 
R paketi mitmemõõtmeliste analüüsimeetodite kohta saab informatsiooni järgmiselt veebilehelt :
http://www.statmethods.net/advstats/index.html
Eestikeelsetest materjalidest soovitan tutvuda:  https://samm.ut.ee/faktoranalyys
[bookmark: _heading=h.34g0dwd]Klasteranalüüs 
Klasteranalüüsi kasutatakse objektide grupeerimiseks nende omavahelise sarnasuse alusel (kas sarnased tunnuste väärtuste poolest või mingi muu mõõdetava käitumise alusel). Saadud gruppe nimetatakse tavaliselt klastriteks. 
Kasutatakse kaht erinevat klasterdamise meetodit: 
1. hierarhiline klasteranalüüs 
antud meetodi korral hakatakse järjekorras kokku panema kõige sarnasemaid objekte, sarnasuse mõõduks on erinevad kauguse määramise meetodid. Põhimõtteliselt on alguses iga objekt eraldi klaster, millele hakatakse siis objekte ühendama, lõpuks on kõik objektid ühes klastris. Hierarhilise klasteranalüüsi põhilisks väljundiks on puu (tree), alati on ka võimalus tellida igale objektile juurde tema klastri number. Järgmisel joonisel on näiteks toodud, kuidas meie poolt uuritud järved jagunevad läbipaistvuse alusel. 
2. k-keskmiste klasteranalüüsi korral antakse klastrite arv ette ning vastavalt klastri keskmisele liidetakse objektid klastritesse. Iga objekt saab oma klastri numbri. 

andmed3=read.csv("http://haldna.ee/r/Statistika/jarved_klaster.csv",
header=TRUE,sep=",", dec=".") 
names (andmed3) 
attach(andmed3) 
a1=data.frame(andmed3[,2:5]) 
mydata <- scale(a1) 
rownames(a1)=X 
#Mitu klastrit oleks m6stlik? 
wss <- (nrow(mydata)-1)*sum(apply(mydata,2,var)) 
for (i in 2:5) wss[i] <- sum(kmeans(a1, 
centers=i)$withinss) 
plot(1:5, wss, type="b", xlab="Number of Clusters", 
ylab="Within groups sum of squares") 
d <- dist(mydata, method = "euclidean") # distance matrix 
fit <- hclust(d, method="ward") 
#selleks, et nimed tuleks alla nulli 
plot(fit,hang=-1,main="Järvede klastrid Ward'i meetodiga") 
#jagame kaheks grupiks 
groups <- cutree(fit, k=2) # cut tree into 2 cluster 
#vaatame, kuhu klastrisse iga järv sattus 
cbind(X,groups) 
# teine klasterdamise meetod, keskmiste kaudu 
hc <- hclust(d,method="ave") 
plot(hc, hang = -1,main="Järvede klastrid keskmiste meetodiga",xlab="Järved")

[bookmark: _heading=h.43ky6rz]Lisad
[bookmark: _heading=h.3rdcrjn]Näpunäiteid andmetabelite koostamisel
Mismoodi andmetabelis objekti mingi tunnuse puuduvaid väärtusi asendada?
On mitmeid lähenemisi:
· tunnuseid analüüsitakse paarikaupa, välja jättes need objektid, millel väärtus puudub;
· puuduvad väärtused asendatakse vaadeldava tunnuse keskmisega;
· objekt jäetakse uurimise alt välja (kogu rida visatakse minema);
· puuduvad väärtused asendatakse mingi lähedastel tingimustel mõõdetud tunnuse väärtusega;
· arvutatakse puuduvate väärtuste lineaarsed prognoosid;

Kui tegu on mittejuhusliku puudumisega, näiteks mingi faktorite komplekti korral tunnusel tõesti väärtus puudub, siis tuleb see ka kokkuleppeliselt tähistada. (näiteks järve vee happesust ei saa määrata, kui pH on suurem kui 8.3)
Kui väärtus puudub näiteks mõõtmisvahendi tõttu ( väärtus liiga väike või suur), siis peaks asendama puuduva arvu kas nulliga, antud tunnuse alam(ülem)piiriga või ka poolega alampiirist. See on kokkuleppe küsimus. Alampiiriga asendamisel tuleb arvestada mõõtühikuga, see peab olema sama, mis teistel objektidel sama tunnuse korral. Siinjuures tuleb kogu andmebaasi korral kasutada sama meetodit. Näiteks ei ole vist normaalne, et fosforit veeproovis ei leidugi, lihtsalt analüüsimeetod ei suuda seda määrata.
Mida veel andmetabelite koostamisel tähele panna?
Ideaalvariandis on igal objektil kõik tunnused ja faktorid mõõdetud ja kirja pandud. Exceli või Open Office tabel on mugav andmete sisestamiseks, ta on ka kõige kättesaadavam ja igas arvutis olemas. Samas lubab tabelarvutusprogramm liiga vabalt andmeruutudesse väärtusi sisestada (pikad pealkirjad veergudel, arvtunnused ja mittearvulised tunnused segiläbi, joonised jms keset andmetabelit jne. Statistikapaketid eeldavad kindlat struktuuri: tunnuse ja faktori nimed kirjutatakse ainult esimesse ritta, soovitavalt ühes tükis (tühikuteta), kasutamata täpitähti, numbrilist algust (näiteks 3liik). Alates teisest reast tulevad objektid koos oma tunnuste väärtustega. Exceli tabelites on sageli 2. reas mõõtühikud, need statistikapaketi tabelitesse ei sobi, soovitan selleks otstarbeks säilitada see info eraldi.
Samas andmestikus peavad olema ühesugused tühiku tähistused. Enamus eelnimetatud toiminguid on kergem teha Excelis korda, muidu kujuneb suurem osa statistilises analüüsi ajast vigade otsimise ja kõrvaldamise peale.
Näide. Kaks erinevat moodust samade andmete sisestamiseks Excelis. Mõlemad on õiged- kumb valida, sõltub analüüsimeetodist.
Tabel 1. Objektiks on konkreetsel aastal konkreetses kohas  konkreetse liigi vaatlus. Faktorid -Aasta, Koht, Liik, uuritav tunnus - Arvukus.
[image: ]
Tabel 2. Konkreetsel aastal konkreetses kohas tehtud vaatlus. Faktorid – Aasta ja Koht, uuritavateks tunnusteks kolme liigi arvukused.
[image: ]
[bookmark: _heading=h.1qdqyersvi8a]Matemaatilise statistika teooria keskväärtuse usalduspiiride arvutamise kohta
1) Samast ÜKst pärinevad juhuslikud valimid on erinevate väärtustega, seega on ka erinevate valimite keskväärtused, standardhälbed jm parameetrid erinevad. Võime ütelda, et valimi põhjal leitud tunnuse keskväärtus on juhuslik suurus.
2) Normaaljaotusega tunnuse keskväärtuse (kui juhusliku suuruse) jaotus on normaaljaotusega  mille keskväärtus on sama kui tunnuse enda oma. Keskväärtuse standardhälve aga väheneb vastavalt valimi mahule (mida suurem valim meil hindamiseks on, seda väiksema hajuvusega on keskväärtus). Seega on keskväärtus normaaljaotusega . Arvu  nimetatakse tunnuse keskväärtuse standardveaks. 3). Tõestatud on, et kui valimi maht on piisavalt suur (vähemalt üle 60), on üldkogumi keskväärtuse jaotus normaaljaotusega isegi siis, kui valim ise ei ole normaaljaotusega.
3) Kui valimi maht on väiksem kui 60 ja tunnus ei ole üldkogumis normaaljaotusega, siis kirjeldab keskväärtuse ja standardhälbe ühist käitumist Studenti ehk t-jaotus.
Tegelikku ÜK keskväärtust μ ja standardhälvet σ me ei tea, teada on valimi aritmeetiline keskmine ( ÜK keskväärtuse hinnang) ning valimi standardhälve s. Neid hinnanguid kasutades teeme me tõenäoliselt vea suurusega , mida pole jälle võimalik arvutada, sest me ju ei tea parameetri μ väärtust. Statistika teoreetikud on teada saanud selle vahe käitumise seaduspärasused. Nimelt, kasutades standardiseerimist (tsentreerimine ja normeerimine) ning seda, et keskväärtuse standardhälve on  saame standardse normaaljaotusega suuruse
 . Standardse normaaljaotuse korral saab statistika raamatute spetsiaalsetest tabelitest või tarkvarast kasutades leida sellised kriitilised väärtused (nimetatakse kvantiilid), mis näitavad, kui suur osa juhusliku suuruse väärtustest jääb väljapoole meid huvitavaid usalduspiire. Usalduspiiride laiuse määrab eespoolmainitud olulisuse nivoo (0,05) või usaldusnivoo (0,95). 
Näiteks meid huvitavad 95% usalduspiirid keskväärtuse jaoks (α=0.05): standardse normaaljaotuse kvantiilide tabelist saame väärtused ülemine kvantiil (nimetatakse ka täiendkvantiil) = 1,96 ja alumine kvantiil =-1,96
[image: normjaotus]
Kvantiile kasutades arvutame keskväärtuse jaoks lõigu, mille tõenäosuse anname ise ette. , ehk
.
Siit avaldatakse piirid, kus keskväärtus tõenäosusega 1-α asub, need on 
valem 1:             .				
Pannes kvantiilide väärtused asemele, saame 95% usalduspiirid
			.	
Seda vahemikku nimetatakse etteantud usaldusnivool 1-α (või ka 1-α⋅100 protsendiliseks) või ka ÜK keskväärtuse usaldusintervalliks olulisuse nivool α, vastavaid otspunkte alumiseks ja ülemiseks usalduspiiriks.
R käsud antud teooria juurde leiad 1.praktikumi materjalidest.
Väikeste valimite korral (n<30) võtame usalduspiiride testimisel aluseks t-jaotuse ning asendame vastava standardse normaaljaotuse täiendkvantiili  t-jaotuse omaga, seda tähistatakse . Paneme tähele, et siin on kvantiili leidmisel tähtis valimi mahu arvestamine. T-jaotuse 0.05 kvantiil on n=10 korral näiteks 2,26 aga n=120 korral 1,98 (enam-vähem sama mis standardse normaaljaotuse korralgi).

valem 1:             .
[bookmark: _heading=h.1pxezwc]Rkäsud kvantiilide arvutamiseks standardse normaaljaotuse keskmise usalduspiiride leidmise jaoks (zα/2  valemisse 1) usaldusnivool 0,95
qnorm(0.975); qnorm(0.025)
Teeme teoreetilise valimi standardse normaaljaotusega.
quantile(rnorm(1000,0,1), probs =c(0.025,0.975)). 
Saame taas 95% usalduspiirid nagu valemis 1 antud. 
     2.5%     97.5% 
-1.948812  1.962633

Leiame pikkuse jaoks kvartiilid
quantile(pikkus, probs =c(0.25,0.75))
Kasutame R abi pikkuse keskväärtuse 90% usalduspiiride leidmiseks
Vaja on teada standardse n.j. 90% kvantiili qnorm(0.95), pikkuse keskväärtust mean(pikkus)ja standardhälvet sd(pikkus) ning valimi mahtu (mitu pikkust meil mõõdetud on length(pikkus).  

Ülemine=mean(pikkus)+qnorm(0.975)*sd(pikkus)/sqrt(length(pikkus));Ülemine
Alumine=mean(pikkus)-qnorm(0.975)*sd(pikkus)/sqrt(length(pikkus));Alumine

Z arvutamine R abil.
(38/150-44/150)/sqrt((0.266*0.744)/300)
[1] -1.557375
-1.557 jääb standardiseeritud normaaljaotuse tava piirkonda (95% piirid on -1,96 ja 1,96), seega jääme H0 juurde.
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