1. Solid Edge FloEFD ja arvutuslik voolu dünaamika

6. Võrgustiku loomine ja keha jaotamine kontrollmahtudeks

Numbrilise lahenduse eelduseks on arvutusruumi jaotamine väikesteks osadeks, mida nimetatakse kontrollmahtudeks. FloEFD-s realiseeritakse see võrgustiku abil, mis koosneb lahtritest ehk võrgusilmadest. Need lahtrid katavad kogu arvutusruumi, sealhulgas voolise ja tahke keha piirkonnad. Võrgustiku kvaliteet määrab simulatsiooni täpsuse ja arvutusaja. Joonis 1 kujutab paksuseinalise toru ristlõiget, millele on laotatud kartesiaanvõrgustik, mille risttahukad on küljepikkusega 15;10;5 ja 2,5. 

Joonis 1. Kartesiaanvõrgustik erinevate lahtrisuuruste korral.

Oluline FloEFD tehnoloogia on vedeliku-tahke aine piirpindadega lahtrid (varasemalt nimetatud osalisteks lahtriteks). Need tekivad seal, kus lahter lõigatakse kaheks, üks osa jääb tahkesse kehasse, teine voolisesse. Piirpindadega lahtrid võimaldavad täpselt kirjeldada voolise ja tahke keha koostoimet ilma, et oleks vaja luua väga tihedat võrgustikku seina lähedal. FloEFD rakendab muudetud seinafunktsioone, mis haaravad piirikihi mõju automaatselt. Erinevalt klassikalistest AVD meetoditest ei pea kasutaja määrama piirikihi paksust ega lahtreid, sest see toimub automaatselt, tuginedes füüsikalistele ja empiirilistele mudelitele.

Lisaks pakub FloEFD lahenduspõhist võrgustiku täpsustamist. See funktsioon peatab analüüsi teatud etapis, hindab voolu gradientide jaotust ning täpsustab võrgustikku seal, kus gradientid on suurimad. See on eriti kasulik keerukates olukordades, näiteks lööklainete või aerodünaamiliste nähtuste korral, kus kriitiliste piirkondade asukohta on raske ette ennustada. Lahenduspõhine täpsustamine toimub automaatselt ja vähese kasutaja sisendiga, mis tähendab, et täpsus paraneb minimaalse arvutusaja kasvuga.

FloEFD võimaldab ka kasutajal ennetavalt täpsustada võrgustikku piirkondades, kus on teada kitsad kanalid, radiaatorid või ventiili avad. Selline lokaalne täpsustamine koos automaatse lahenduspõhise täpsustamisega tagab, et simulatsioon on täpne ja arvutusressursid on optimaalselt kasutatud.